Fracture simulation of an FRP tube with continuous random fibres at the initial stage
by Asao Koike; Reika Akita; Atsushi Yokoyama
International Journal of Automotive Composites (IJAUTOC), Vol. 4, No. 1, 2018

Abstract: Fibre reinforced plastics (FRP) composite materials are currently employed increasingly widely in vehicle body parts to reduce the weight and improve the fuel efficiency because these materials are lightweight and exhibit high stiffness. Another particularly interesting function of the materials is the continuous and stable fracture phenomenon known as the 'progressive crushing mode' that occurs when an FRP tube with a trigger part is crushed in the axial direction. This phenomenon makes the FRP tube more effective to absorb crush energy than a conventional metal. Moreover, this benefit is considered for use in crush boxes of vehicles. In our previous studies, we conducted experimental analysis of the fracture mechanism at the initial stage of the FRP tube and made a test report publicly available. In this paper, we propose a finite-element model that is reasonably simple and accurate enough to simulate the initial fracture found experimentally.

Online publication date: Tue, 25-Sep-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automotive Composites (IJAUTOC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com