Friction properties and lubrication mechanism of self-lubricating composite solid lubricant on laser textured AISI 52100 surface in sliding contact
by Xijun Hua; Julius Caesar Puoza; Peiyun Zhang; Jianguo Sun
International Journal of Surface Science and Engineering (IJSURFSE), Vol. 12, No. 3, 2018

Abstract: The frictional behaviour and lubrication mechanism of self-lubricating Gr-MoS2-PI-CNT composite were investigated experimentally, characterised by surface preparation method and texture density. The results indicate that the dimples filled with composite solid lubricant (sample TPL) exhibited the best lubrication mechanism with the lowest friction as compared to the smooth surface without lubrication (sample S), textured surface without lubrication (sample T), textured surface burnished with solid lubricant (sample TSL) and textured surface coated with solid lubricant block (sample TBL). The texture density of 41.7% exhibited good friction properties under both higher loads and speeds. The composite solid lubricant formed stable lubricant-peaks on each dimple the by 'slide extrusion accumulation' mechanism with a gradient phenomenon along the sliding direction which improved the self-lubricating effect of the lubricant. The energy dispersive X-ray spectroscopy (EDS) analysis indicates that the solid lubricant has been transferred from the micro-dimples to the space between dimples which improved lubrication.

Online publication date: Sat, 15-Sep-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Surface Science and Engineering (IJSURFSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com