Residual stress analysis in micro- and nano-structured materials by X-ray diffraction
by P. Gergaud, P. Goudeau, O. Sicardy, N. Tamura, O. Thomas
International Journal of Materials and Product Technology (IJMPT), Vol. 26, No. 3/4, 2006

Abstract: Micro- and nano-structured materials often exhibit high level of residual stresses which may affect the reliability of electronic devices. Stress control is, therefore, essential for improving device lifetime. X-ray diffraction is one of the most widely used techniques for stress analysis. It is essentially non destructive and allows for the study of both the microstructural and elastic properties of all the diffracting phases in complex materials. With the advent of third generation synchrotrons and the development of new X-ray optics and detectors as well as enhanced data analysis capabilities, measurements of specific stress features such as local stresses, stress gradients and stress heterogeneities are now within reach. This paper reviews the state of the art in that field illustrated with a few examples.

Online publication date: Tue, 04-Apr-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com