Numerical insight into multisize particulate flow field through rotating channel
by Pankaj K. Gupta
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 18, No. 5, 2018

Abstract: Detailed insight into dense multisize particulate flow field in a straight channel subject to spanwise system rotation is presented for the first time. Mathematical modelling employs Eulerian-Eulerian (continuum-mechanical) approach accounting for the broad particle size distribution that is common place in industrial slurries. Numerical formulation utilises Galerkin FEM using Q1Q0 elements. Besides counter-intuitive observations in velocity flow field, the effects of varying system rotation rates and flow Reynolds number indicate interesting interplay between turbulence, Coriolis force and centrifugal force on the dense solid-liquid flow field.

Online publication date: Mon, 10-Sep-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com