A comparative study of mixed least-squares FEMs for the incompressible Navier-Stokes equations
by Alexander Schwarz; Masoud Nickaeen; Serdar Serdas; Carina Nisters; Abderrahim Ouazzi; Jörg Schröder; Stefan Turek
International Journal of Computational Science and Engineering (IJCSE), Vol. 17, No. 1, 2018

Abstract: In the present contribution, we compare (quantitatively) different mixed least-squares finite element methods (LSFEMs) with respect to computational costs and accuracy. Various first-order systems are derived based on the residual forms of the equilibrium equation and the continuity condition. The first formulation under consideration is a div-grad first-order system resulting in a three-field formulation with total stresses, velocities, and pressure (S-V-P) as unknowns. Here, the variables are approximated in H(div) × H1 × L2 on triangles and in H1 × H1 × L2 on quadrilaterals. In addition to that a reduced stress-velocity (S-V) formulation is derived and investigated. S-V-P and S-V formulations are promising approaches when the stresses are of special interest, e.g., for non-Newtonian, multiphase or turbulent flows. The main focus of the work is drawn to performance and accuracy aspects on the one side for finite elements with different interpolation orders and on the other side on the usage of efficient solvers, for instance of Krylov-space or multigrid type.

Online publication date: Mon, 03-Sep-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com