Performance analysis of ZnO-based ultrasonic MEMS transducer used for blind person navigation
by Hara Prasada Tripathy; Priyabrata Pattanaik; Sushanta Kumar Kamilla
International Journal of Nano and Biomaterials (IJNBM), Vol. 7, No. 3, 2018

Abstract: Navigation is not an easy task especially without using eye. Creatures like bats and dolphins are navigated by creating ultrasonic wave. The sensory organs help them to create and sense the path without visualising it. This paper imitates these creatures to propose an ultrasonic-based MEMS transducer for blind person navigation. MEMS-based acoustic transducers commonly employ the piezoelectric material. This model has been designed by using non-toxic and low cost compound like zinc oxide (ZnO) using COMSOL multiphysics. 2D axis-symmetrical model geometry is designed to imitate like sensory organ to sense the obstacle present two metres away from it. An optimised voltage of five volts and frequency of 20.103 KHz is applied to the proposed model to create ultrasonic wave. Further, the wave propagation in the air medium is analysed by using 3D partial differential equation. The pressure waves are studied during transmitting and receiving time. The rebounded wave from the obstacle to the transducer is converted to 30.2 mV by the proposed model. The von-misses stress is carried out to study the pressure on transducer surface.

Online publication date: Thu, 23-Aug-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nano and Biomaterials (IJNBM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com