Comprehensive investigation on the mechanical properties of friction stir composite joint from polyethylene-polypropylene
by Rezaee Hajideh Mojtaba; Mohammadreza Farahani; Omid Shapurgan
International Journal of Manufacturing Research (IJMR), Vol. 13, No. 3, 2018

Abstract: The widespread application of polymers has motivated researchers to improve their forming and joining processes. In this category, friction stir welding (FSW) proposed as an alternative for the traditional joining processes. In this paper, FSW with a threaded cylindrical tool was employed for dissimilar joining of sheets of polyethylene and polypropylene. In order to control the material flow, the used tool was equipped with a hot shoe. In the following, the influences of important process parameters such as tool rotation speed, tool traverse speed and tool tilt angle on the joint mechanical properties were investigated. In the optimum joining condition, composite welded joint with defect-free uniform microstructure, with strength equal to 99% of polyethylene and with higher elongation and hardness than the polyethylene was obtained. The optimum rotational speed equal to 1,860 rpm with the highest travel speed equal to 12.5 mm/min provide the welded joints with best mechanical properties. [Submitted 4 April 2017; Accepted 29 August 2017]

Online publication date: Wed, 01-Aug-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Research (IJMR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com