Nonlinear modes of large-amplitude ship motion with roll-pitch coupling
by Thomas J. Liebau
International Journal of Nonlinear Dynamics and Control (IJNDC), Vol. 1, No. 2, 2018

Abstract: This research pertains to the dynamics of a ship taking into account the nonlinear coupling of roll and pitch degrees of freedom. Such nonlinearity has critical implications for large-amplitude ship motion, and can thus be useful in understanding conditions leading to capsize. The nonlinear normal modes of the conservative system are determined numerically and are displayed in a frequency-energy plot, which clarifies the bifurcations that connect the various branches of periodic orbits. Numerical simulations show that, although the solutions on most branches result in capsize if their energy is beyond a common critical value, a few branches contain stable solutions at higher energies that do not lead to capsize, suggesting possible methods of capsize mitigation. We study a class of solutions analytically using a complexification-averaging technique. Finally, we run a simulation in the case of light damping in roll with high-energy initial conditions, illustrating transitions between branches that occur in the direction of decreasing energy on the frequency-energy plot.

Online publication date: Mon, 30-Jul-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nonlinear Dynamics and Control (IJNDC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com