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Abstract: This paper deals with the analysis of fracture identification of a 
generic masonry structure subjected to loads and to kinematical actions 
(settlements, distorsions). The masonry is composed of normal rigid no-tension 
material (NRNT), that is a Heyman’s material treated as a continuous body. An 
energy minimum criterion is used to solve the equilibrium problem, using 
continuous (C°) displacement fields and adopting a classical Finite Element 
approximation for the geometrical description. Some examples illustrate the 
way in which our approximate method detects crack patterns in some simple 
cases. The C° method, though more cumbersome form the numerical point of 
view, exhibits great efficiency in the identification of the exact location and 
orientation of the crack system, compared to methods based on discontinuous 
displacement fields. 
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1 Introduction 

The present work deals with the assessment of the crack pattern due to given kinematical 
data (settlements/distortions) in masonry-like structures. On adopting the Heyman’s 
model (see Heyman, 1966), we extend it to masonry structures considered as continuous 
bodies on considering the material as normal rigid no tension (NRNT). This material 
allows for the application of the theorems of Limit Analysis (i.e., the safe and the 
kinematic theorem), as first suggested by Kooharian (1952). For the application of these 
Theorems to unilateral materials we refer to the works of Livesley (1978), Como (1992), 
Angelillo (2014, 2015), Brandonisio et al. (2013, 2015), Gesualdo et al. (2017), Angelillo 
et al. (2014), Fortunato et al. (2015, 2018). 
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A minimum energy criterion, based on a displacement approach, enables to study the 
solutions of some typical mixed boundary value problems (BVP) of structures made of 
NRNT material. 

The energy for brittle materials consists of the potential energy of the applied loads, 
of the elastic and of the interface ones, this latter being the energy necessary to activate a 
cracks on internal surfaces (Gesualdo et al., 2014, 2017; Monaco et al., 2014; Angelillo et 
al., 2012, 2015, 2016; Gesualdo and Monaco, 2015). For Heyman’s materials, the energy 
is given only by the potential energy of the loads (De Serio et al., 2017). In the case of 
combined loads a wide range of bounding conditions are suggested in Fraldi et al. (2009); 
as a support to the monitoring of existing structures the method is also very useful  
(see Cennamo et al., 2013), as well as in the thrust network analysis (Marmo et al., 2018; 
Marmo and Rosati, 2017), or for time histories analyses in earthquakes as in Cennamo  
et al. (2017) and in the analysis of collapse risk of masonry structures in the cities 
(Cennamo et al., 2017; Calderoni et al., 2016). 

In order to search for the minimal solution of the energy a C° displacement method is 
proposed and discussed, approximating the solution in the set of continuous (C°) 
displacements. It is worth pointing out that, though for NRNT materials singular (i.e., 
concentrated) strains are admitted, with the C° method the strain exhibits only a regular 
part. 

With the C° method, the minimum search can be undertaken approximately by using 
classical finite element (FE) approximations for the geometrical description of the 
problem. For unilateral material, a similar C° based displacement procedure has been 
already introduced in the paper by Angelillo et al. (2010) for the parent case of normal 
elastic no-tension (NENT) materials. What can be seen from Angelillo et al. (2010) by 
looking at some benchmark examples, is that, when the exact solution presents strain 
concentrations on some internal lines (cracks), the numerical solution exhibits large 
gradients (tending to become infinite for finer mesh sizes), on narrow bands 
approximating the fracture lines. The C° solution appears as more adaptable than the rigid 
block approximation (e.g., the piecewise rigid displacement (PR) method), as exposed in 
Iannuzzo et al. (2018), in approximating fracture lines that are far from being located 
along the skeleton of the mesh. 

Some benchmark problems are examined to explain the ability of the C° method to 
predict crack patterns and the correspondent piecewise rigid displacement field as well as 
the partition into rigid blocks in which the structures separate during their movements. 
Finally, the last application involves a masonry portal undergoing some experimental 
tests (see Augenti et al., 2010) and exhibiting typical fracture patterns in the spandrel. As 
a result of a comparison of real fracture pattern with those predicted by our model, it is 
seen that the predictions of the proposed model are in good agreement with the laboratory 
outcomes. 

2 NRNT materials and BV problem 
NRNT materials. The Heyman’s model can be extended to two-dimensional continua 
imposing unilateral material restrictions on the stress and suitable assumptions on the 
latent strain i.e., on the inelastic deformation associated to bear the stress unilateral 
constraint. A 2d masonry structure S, is modelled as a continuum Ω of the Euclidean 
space ε2. The stress inside Ω is denoted by T and the displacement of material points x 
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belonging to Ω with the symbol u. The linear strain E is adopted as the strain measure, 
restricting to of small displacements and strains. 

The NRNT material is characterised by the following restrictions: 

 ,  0,   ,T Sym E Sym T E− +∈ ∈ ⋅ =  (1) 
being  , Sym Sym− +  the mutually polar cones of negative semidefinite and positive 
semidefinite symmetric tensors. Restrictions (1) are equivalent to the following normality 
conditions: 

( )* * ,   0 ,    T Sym T T E T Sym− −∈ − ⋅ ≥ ∀ ∈
 (2) 

and, dually, to the so called dual normality conditions: 

( )* *,   0,     .E Sym E E T E Sym+ +∈ − ⋅ ≥ ∀ ∈  (3) 

The restrictions (2) defining the NRNT material are the principal elements for the 
application of the Limit Analysis theorems (see Kooharian, 1952; Giaquinta and Giusti, 
1985; Livesley, 1978; Fortunato et al., 2014, 2016). 

The BV problem. The equilibrium of a 2d masonry structure, modelled as a continuum 
made of NRNT material and subject to loads and settlements, can be expressed as a 
Boundary Value Problem (BVP) as follows: “Find a displacement field u and the allied 
strain E, and a stress field T such that 

( )1 ,  ,    on    
2

T
DE u u E Sym u u+= ∇ + ∇ ∈ = ∂Ω  (4) 

0  ,     ,     on    NdivT b T Sym Tn s−+ = ∈ = ∂Ω  (5) 

0 T E⋅ =  (6) 

where n is the unit outward normal to the boundary δΩ, and δΩD, δΩN is a fixed partition 
of the boundary into constrained and loaded parts respectively (Angelillo and Fortunato, 
2004). 

An important role is played by the set K of kinematically admissible displacements, 
and the set H of statically admissible stresses, defined by: 

( )1  /   &    on   ,
2

T
DK u S E u u Sym u u+ = ∈ = ∇ + ∇ ∈ = ∂Ω 

 
 (7) 

{ }'  / 0 ,   ,  on     NH T S divT b T Sym Tm s−= ∈ + = ∈ = ∂Ω  (8) 

with .S S ′  two suitable function spaces. 
A solution of the BVP for masonry-like structures is a triplet ( )( ), , u E u T° ° °  such that: 

u K°∈ ,T H° ∈ , and ( ) 0.T E u° ⋅ ° =  
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3 The kinematical problem (KP): an energy approach 

The adoption of a displacement approach to a structure subject to given loads and 
distortions, consists in the search of a displacement field u K∈  for which there exist a 
stress field T H∈  such that ( ) 0.T E u⋅ =  In order to solve the BVP with a displacement 
method, a criterion based on the minimisation of an energy function ( )u℘  depending on 
u is considered. 

The minimiser of ( )u℘  over the set K, is the solution of the BVP under the 
restrictions (1), then it ensures the equilibrium of the loads applied on the structure. 

For NRNT materials, the total potential energy reduces to the potential energy of the 
loads, that is to a linear functional of u. The minimum energy problem can be formulated 
as follows: “Find a displacement field u K°∈ , such that 

( ) ( )min   
u K

u u
∈

℘ ° = ℘ , (9) 

where 

( )   d  d ,
N

u s u s b u a
∂Ω Ω

℘ = − ⋅ − ⋅∫ ∫  (10) 

is the potential energy of the given loads and K  is the set of kinematically admissible 
displacements, defined in equation (7). 

The proof of the existence of the minimiser u°  of ( )u℘  for u K∈ , is a complex 
mathematical question and is beyond the scopes of the present paper. The interested 
reader can refer to the papers (Giaquinta and Giusti, 1985; Anzellotti, 1985), where the 
existence of the minimum is discussed, with the direct method of the calculus of 
variation, for the parent problem concerning elastic normal no-tension materials. In those 
papers the existence of the minimiser u°  of the total potential energy for ( )u BD∈ Ω , is 
proved under some restrictions on the given loads (among which the main assumption is 
the so-called safe load condition: see Remark 4), in the case either of pure traction 
problems or pure displacements problems: the case of mixed problem is not covered. On 
assuming that the KP is compatible (i.e., )K ≠ ∅ , what we can easily show is that: 

• If the load is compatible (i.e., H ≠ ∅ ) the linear functional ( )u℘  is bounded from 
below. 

• If the triplet ( , ( ), )u E u T° ° °  is a solution of the BVP, it corresponds to a weak 
minimum of the functional ( )u℘ . 

These simple proofs of the propositions a and b are reported in Iannuzzo et al. (2018). 

4 The C° method: theory and numerical implementation 

4.1 C° method: theory 

The minimisation strategy based on continuous (C0) displacement fields reduces to a 
classical approximation procedure based on a FE mesh, for which the strain is purely 
regular: the approximation of the minimum problem (17) through C0 functions yields to a 
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classical FEM-like formulation, whilst the use of piecewise rigid displacements (as in 
Iannuzzo et al., 2018) can be thought of as belonging to the class of so-called discrete 
element methods (see Sarhosis et al., 2016), and for application (Simon and Bagi, 2016)). 

The formulation of the C0 method proceeds as follows. The first simplification 
consists in considering only the infinite dimensional subset of K constituted by 
continuous functions. The second approximation is to restrict to a finite subset of it, by 
discretising the domain Ω into a number M of elements with the finite partition 

{ }1,2,..,( ) ,i i M∈Ω  (11) 

such that 

( )
1

 ,
M

i
i

P
=

Ω <∞∑  (12) 

( )iP Ω  being the perimeter of iΩ . In particular, in what follows, we refer to polygonal 
elements, such that the boundary i∂Ω  of the n-polygon iΩ , is composed of n segments 
Γ  linking n points. 

Remark 3: We remark that, whilst with the PR method (see Iannuzzo et al., 2018), the 
interfaces between blocks play a crucial role, being potential fracture lines, with the 
second method two nodes belonging to two different elements must have the same 
displacements, and then the interfaces play a secondary role.  ▊ 

Assuming the continuity of the displacement field at the nodes, the NRT material 
restrictions have to be enforced on the strain arising inside the elements. In particular, 
recalling definition (1), the normal rigid no-tension material (NRNT) is completely 
defined by the restrictions: 

,  ,   0  .T Sym E Sym T E− +∈ ∈ ⋅ =  (13) 

On approaching the problem as an energy minimisation of the type (9), that is with a 
displacement approach, the latent strain E has to belong to the positive semidefinite cone: 

.E Sym+∈  (14) 

This restriction, for 2d problems, is equivalent to the two following inequalities: 

0,  0 .trE detE≥ ≥  (15) 

In the 2d Euclidean space, a generic tensor, such as the latent strain E can be represented, 
in a fixed Cartesian reference, by a 2x2 matrix: 

11 12

21 22

 .E
ε ε
ε ε
 

=  
 

 (16) 

Geometrically, the condition 0detE ≥  defines a double cone in the space Sym , and the 
additional condition 0trE ≥  selects one of the two parts of the cone, namely the set of 
semidefinite positive symmetric tensors which is a convex cone. In particular, 
analytically, such restrictions can be conveniently represented in graphical form with 
reference to the three dimensional space Sym  spanned by the dyadic orthonormal base 



   

 

   

   
 

   

   

 

   

    Crack patterns identification in masonry structures 301    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 1 2 2 1 2 2 1(  ,  , 2( ))e e e e e e e e⊗ ⊗ ⊗ + ⊗ , conditions (15) can be written in terms of 
Cartesian components, as: 

2
11 22 12 11 220 ,   0 ,ε ε ε ε ε− ≥ + ≥  (17) 

which can easily be expressed as conditions on the displacement field u  since 
E Sym u= ∇ . We choose to implement numerically conditions (17) in an approximate 
way in order to preserve the linearity of the problem. The typical way to do so is to 
approximate the cone Sym+  through a plane envelope. The linearisation of conditions 
(17) is described in detail in Section 6.2 (item 4). 

The partition ( ) { }1,2,..,i i M∈
Ω  constitutes a discretisation of the geometrical domain, the 

displacement field u  is a function of the nodal displacements, as sketched in Figure 1.  
In particular, let 2ˆ NU R∈  be the vector which collects the displacement components of 
the 2N nodes, the displacement field can be expressed as a functions of the node 
displacements: 

ˆ ,( ) u u U=  (18) 

where ( )1 1
ˆ , ,.., , ,.., , i i N NU U V U V U V=  and ( ), i iU V  denotes the displacement of the node 

i . If N
cK  denotes the finite subspace of SBV defined by the continuous functions 

associated with the finite element chosen, the minimum problem can be written as 
follows: 

( ) ( )ˆ min  ,
N
cu K

u u
∈

℘ = ℘  (19) 

in which the continuous displacement N
cu K∈  is expressed by 2N  scalar parameters, 

that are the components of the displacements of the N  nodes of the given mesh. 

Figure 1 The infinite dimensional space cK  of continuous displacements with support in Ω :  
(a) is discretised considering a partition { }1,2,..,( )i i M∈Ω  of the whole domain into e.g., 
quadrangular elements; (b) the finite dimensional approximation generated by the fixed 
partition is called N

cK , where N  is the number of nodes. In (c) a subdomain kΩ  and a 
second order Lagrangian element with 9 nodes is depicted 

 

These parameters are restricted by the assumption that the strain must belong to the cone 
Sym+ . We recall that the condition E Sym+∈  is enforced in an approximated way by 
restricting E  to belong to an envelope of a finite number of tangent plane. Therefore the 
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only internal restrictions that we have in this case are linear inequalities, which can be 
expressed in terms of the unknown nodal displacements. In matrix form: 

 .ˆ  0AU ≥  (20) 

Finally, with the proposed FE approximations, the minimum problem (19) which 
approximates the minimum problem (9) can be transformed into 

( ) ( )0 min    ,ˆ ˆ
NU K

U U
∈

℘ = ℘
�

 (21) 

NK  being the set 
2{  /   ˆ  0}ˆ .N NK RU UA= ∈ ≥  (22) 

4.2 C° method: numerical implementation 

The solution of the specific problems here analysed is obtained by implementing the 
method with the program Mathematica ® (Wolfram, 2003). The implementation of the 
method proceeds into the following steps: 

• definition of the structural geometry and of its discretisation 

• discretisation of the displacement field over the given mesh 

• explication of the potential energy in terms of the nodal displacement parameters 

• explication of the side conditions 

• numerical solution of the minimum problem with a linear programming routine 

• post-processing (evaluation of displacement and strain corresponding to the 
approximate minimum solution). 

• Let us denote *Ω  the domain of 2E  representing the structural geometry; consider 
the minimum rectangular domain *Ω  containing *Ω . The whole domain *Ω  is 
partitioned into N rectangular basic units iΩ , we call them subdomains. The set 

( ) { }
*

1, ,i i N
π

∈ …
= Ω  constitutes a partition of *Ω , that is: 

{ }*

1

 &  ,   , 1, ,   /   .
N

i i j
i

i j N i j
=

Ω = Ω Ω ∩ Ω = ∅ ∀ ∈ … ≠∪   (23) 

To take into account the presence of voids (that is of subdomains of *Ω  not belonging 
entirely to in the domain *Ω ) it is necessary to perform an appropriate elimination of 
some elements belonging to *π . To this purpose, we consider the set 

{ }*
*  /   ,M i iπ π= Ω ∈ Ω ∩Ω ≠ ∅  (24) 

where M is the cardinality of Mπ . Defining  
j M

jπΩ ∈
Ω = Ω∪  from equation (38) it 

follows: 
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* .Ω⊇ Ω  (25) 

Therefore Mπ  is a particular cover of the real structural domain *Ω : it is the minimum 
cover of *Ω  (with respect to the cardinality) and at the same time it constitutes a finite 
partition of Ω , which becomes our structural model domain. Finally, it is to be noticed 
that Mπ  is a countable set of subdomains having finite perimeter, therefore, is a 
Caccioppoli partition of Ω  in the sense of Chambolle et al. (2007). 

• The displacement field ( )u u x= , defined in Ω , is approximated through functions 

belonging to a subset of 0C  associated to the chosen cover Mπ  introduced in 1. The 
optimal choice, balancing accuracy and simplicity, turned out to be a second order 
Lagrangian quadrangular element. In what follows, we refer to this special kind of 
element and to its shape functions (Bathe and Wilson, 1976). 

With reference to Figure 2, in the plane ( ),ξ η  the shape function ( ),ij ijN N ξ η=  with 

( ) { } { } ,  1, 2,3 1, 2,3i j ∈ ×  is such that the maximum one-dimensional polynomial degree is 

of the second order (i.e., 2 2, )ξ η∝  whilst the maximum polynomial term is of the fourth 
order (i.e., 2 2 )ξ η∝ . In particular, denoting ( , )i jξ η  the coordinates of the nodes: 

, ) 1(ij i jN ξ η =  and , ) 0(ij k lN ξ η =  for all ( ) { } { } ( ),  1, 2,3 1, 2,3 \ ,k l i j∈ × . 

Figure 2 Generic subdomain kΩ : a second order Lagrangian element with 9 nodes 

 

For example, the generic shape function could be obtained as the product of two one-
dimensional second order Lagrangian shape functions, e.g., the shape function 23N  is: 

( )( )
( )( )

( )( )
( )( )

1 3 1 2
23

2 1 2 3 3 1 3 2

 N
ξ ξ ξ ξ η η η η

ξ ξ ξ ξ η η η η
− − − −

=
− − − −

 (26) 

Using the diffeomorphism f, namely: 

( ) ( ) ( )( ): , , , ,  ,kf x y x y x yξ η∈ Ω →  (27) 
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it is possible to generate the shape functions for generic rectangles or quadrangles, 
associating to each node belonging to the domain kΩ  in the plane ( ),x y  the relative 

shape function ( ),f
ijN x y  defined as: 

( ) ( ): , ,  .f
ij k ijN x y N f x y∈ Ω → D  (28) 

In the global reference ( ), ,O x y , denoting { }1,..,9l ∈  the generic node of the finite 
element kΩ , the displacement ku  can be expressed as: 

( ) ( )( )
9

1

: ,   ,  ,  ,f
k k l l l

l

u x y N x y U V
=

∈ Ω →∑  (29) 

where ( ),l lU V  is the vector collecting the two unknown components of the translations 
of the nodes l . The global displacement is written as: 

1 1, if   ,

: , if    ,

, if   ,

j j

M M

u x

u x u x

u x

∈ Ω

∈ Ω → ∈ Ω



∈ Ω

#

#
 (30) 

where 
k

ku u
Ω

=  { } 1, ,k M∀ ∈ … . In particular, the continuity on the boundary is ensured 

by the finite element chosen and by its relative shape function. Then the global 
displacement field u  depends on 2N  scalar translational parameters: 

( ) { }1,..,
, , .l l l N

U V
∈

 (31) 

These 2N  independent parameters can be collected in the single vector: 

( ) 2
1 1

ˆ ˆ, ,.., , ,.., , ,    .N
j j N NU U V U V U V U R= ∈  (32) 

• The potential energy ℘, which is the potential energy of the external forces only, 

can be expressed again in terms of the components of Û , ℘ being the negative of 
the scalar product of the applied forces times the displacements of their points of 
application, that is a linear function of 2N  unknown Lagrangian parameters, that 
can be symbolically expressed as follows: 

( ) 2ˆ ˆ,   .NU U R℘ =℘ ∈  (33) 

The problem can be formulated, also in this case, as a linear programming one, in the 
form: 

( )ˆmin  ,
NU K

U
∈

℘
�

 (34) 
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NK  being the subset of 2NR  defined by the unilateral constraints approximating the 
convex cone Sym+ , and to which the latent strain E  must belong. It remains to define 
explicitly the subset 2N NK R⊆ . 

• The subset NK  of 2NR  is identified by a number of inequalities on the latent strain 
E . In what follows we summarise how to write explicitly such unilateral restrictions 
in terms of the displacements of the nodes of each element kΩ . Recalling that the 
displacement field in any finite element kΩ  can be expressed as follows: 

( ) ( )
9

1

 , ,   ,
k

f
k l l l

l

u u N x y U V
Ω

=

= = ⋅∑  (35) 

the latent strain, obtained as the symmetric part of the gradient of ku , is: 

.
k

k kE E Sym u
Ω

= = ∇  (36) 

The latent strain has to belong to the semidefinite positive space Sym+ . This condition, in 

the 3d space 11 22 12( , , 2 )ε ε ε , is represented geometrically in Figure 3 where the 
intersection between the cone  : 0C detE ≥  and the half-space 0trE ≥  is depicted. 

Figure 3 Three-dimensional representation, in the space 11 22 12( , , 2 )ε ε ε , of the cone 
: 0C detE ≥  and of the plane : 0trEπ = . The vector v is orthogonal to the π  plane 

and points toward the half-space 0trE ≥ . The intersection between the half-space and 
the cone is the semidefinite positive convex cone Sym+ . A generic vector E belonging 
to Sym+  is represented (see online version for colours) 
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As already said, the condition on E is non-linear. Anyhow it is possible to approximate it 
with a finite set of linear relations, in order to reduce the non-linear problem to a linear 
one. This is done by linearly approximating the convex cone through a certain number p 
of tangent planes. The construction can be based on a set of points, equally spaced along 
a cross-section of the cone. At each point of this set we define a tangent plane. The set of 
all tangent planes constitutes an envelope of the cone. Increasing the number of points 
along the cross section the envelope produces a better fit of the conical surface Sym+  as 
depicted in Figure 4. 

Figure 4 In (a) envelope formed by 6 tangent planes and in (b) by 16 planes. The cross-section 
between the cone and a plane, orthogonal to the axis of the cone, is represented by the 
circumference on which a certain number of points are selected in order to ‘generate’ 
the plane envelope (see online version for colours) 

 

Thus, denoting ( ),x y� �  the coordinates of a generic Gauss point of kΩ , the non linear 

condition E Sym+∈ , can be written as: 

( ),  ,kE x y Sym+∈� �  (37) 

and in the approximate form (obtained using p  tangent planes), transformed into the 
following set of inequalities: 

( ) ˆ,   0 ,k kA x y U ≥� �  (38) 

where ( ),kA x y� �  is a matrix of p  rows and ˆ
kU  is the vector of the nodal displacements 

the element k. 
The linearised condition E Sym+∈  is then transformed into p  linear inequalities that 

we enforce at 9 points, namely in the Gauss points of the element kΩ , see Figure 5. 
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Figure 5 Envelope of the cone with 6 tangent planes and surface gradient vectors at the 
generating points. The condition ( ),kE x y Sym+∈� �  is discretised by using these gradient 
vectors to construct the system of inequalities ( ) ˆ,   0k kA x y U ≥� �  (see online version for 
colours) 

 

Collecting all these relations, for all elements, we have a set of unilateral constraints, of 
the type: 

ˆ 0 .AU ≥  (39) 

These inequalities together with the boundary conditions restrict the vector 
( ) { }

2
1,..,

ˆ , N
k k k NU U V R

∈
= ∈  to belong to the convex set 

2ˆ ˆ{  /   0}  .N NK U R AU= ∈ ≥  (40) 

• With the above approximation the structural problem is reduced to the following 
minimum problem: “find a piecewise rigid displacement 0Û  which minimises the 
potential energy ℘ in NK : 

( ) ( )0ˆ ˆmin   .
NU K

U U
∈

℘ = ℘
�

” (41) 

This linear programming problem can be solved with a method of linear programming. 
For a small number of variables it can be solved exactly with the simplex method (see 

Dantzig et al., 1955), and for large problems there exist a number of well-known, and 
efficient, approximate alternatives (see Mehrotra, 1992; Vanderbei, 2014; Dantzig, 1963). 
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• Once the minimiser 0Û  has been obtained it is an easy task to construct the 
deformed shape of the structure, and graphically represent the corresponding rotation 
and strain fields. 

Remark 4: We have to point out that the appearance of piece-wise rigid mechanisms 
(producing concentrated fractures) rather than continuous mechanisms (entailing diffuse 
fractures), is often due, in real structures, to mechanical characteristics, such as cohesion, 
toughness and finite friction, which are not accounted for by the NRNT model. 

Indeed for ideal NRNT materials, on an energetical ground, it is in general not possible to 
prefer one way of deformation over the other. This peculiar behaviour is essentially due 
to the absence of any growth property of the energy with respect to unbounded fracture 
strains. A growth property of the energy for displacement fields in ( )BD Ω  is restored by 
introducing the so-called “Safe Load Condition”, a condition which is necessary, with the 
known theorems, to prove the existence of a displacement solution for the parent 
equilibrium problem concerning NENT materials, see Giaquinta and Giusti (1985) and 
Anzellotti (1985). 

Indeed there is a legitimate way to encourage rigid block mechanisms over diffuse 
deformations. It consists in adding, all over the loaded boundary, a given uniform 
pressure of very small magnitude (say of the order of a magnitude of a small fraction of 
the atmospheric pressure). This trick is sufficient to provide the BVP with the “Safe Load 
Condition”, and to make, in most of the examples, concentrated fractures (and then rigid 
block deformations) as the favourite minimising mechanisms. ▊ 

5 Example 1: identification of a diagonal crack 
Let us consider the case of a panel of NRNT material, loaded by its own weight and 
constrained as shown in Figure 6(a). This is a so called mixed problem, since part of the 
boundary is loaded and the remaining part is constrained. A portion of the bottom 
constraint is subjected to a given linear settlement as shown in Figure 6(a). A diagonal 
crack is expected, as a solution of the BVP, as shown with the slanted bold line in  
Figure 6(b). 

Figure 6 Mixed BVP for a panel of NRNT material (loaded by its own weight and constrained as 
shown) subjected to a given linear settlement (a). A diagonal crack is expected (b)  
(see online version for colours) 
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5.1 Example 1: analytical solution 

Using singular strain and stress fields, a possible analytical solution of the mixed BVP 
(shown in Figure 6(a)) is represented in Figure 7. 

Figure 7 A possible analytical solution of the BVP depicted in Figure 6(a), using a regular stress 
field rT  and a singular strain field sE  such that 0r sT E⋅ = , is reported. A hinge 
forms and the crosshatch in red represents the singular deformations sE  along the 
fracture line (see online version for colours) 

 

5.2 Example 1: C° method (square FE mesh) 

The NRNT panel under the BVP described in Figure 6(a) is discretised into 240 square 9-
node Lagrangian elements (Figure 8). We consider again a uniform load applied along 
the top (loaded) part of the boundary. 

Figure 8 Panel of NRNT material discretised into 240 square 9-node finite elements. A portion 
of the constrained boundary is subjected to a given linear settlement as shown  
(see online version for colours) 

 

The solution 0Û  of this minimum problem is obtained through the interior point method 
in 600s (with an Intel® Core™ i7-6700HQ). The corresponding displacement is depicted 
in Figure 9. 
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Figure 9 Displacement field corresponding to the solution 0Û  of the problem (see online 
version for colours) 

 

The streamlines of the displacement field reported in Figure 10(a) identify the point {2.0, 
0.0} as possible centre of rotation. In Figure 10(b) to represent the strain field E , we 
report the graph of a measure of the deformation, namely the contour plot of 

2 ( )TE tr EE= . From Figure 10(b), we see that the gradient of deformation is 
concentrated along a narrow band located in the vicinity of slanted line, whilst the other 
elements are characterised by strains whose norm is close to zero. The skew-symmetric 
part of the displacement field, representing the local rotation field, is depicted in  
Figure 10(c). It should be noticed that the gradient of rotation is also essentially 
concentrated along a diagonal line (Figure 10). By depicting the positive rotations in light 
grey (piers) and the negative ones in dark grey (Figure 10(d)), also in this case we obtain 
a neat subdivision of the domain into two blocks deforming as rigid bodies and a clear 
identification of the possible interface. 

6 Example 3: a simple portal under horizontal load 

In this section, we present two applications concerning a simple portal under horizontal 
actions analysed by using the C° method varying the modelling of the horizontal load. In 
order to solve the problem of a structure under horizontal action and then to evaluate the 
horizontal collapse multiplier cλ , we proceed as follows: denoting with λ  the scale 
factor of the horizontal actions (loads or displacements), we can find an interval [ ],s mλ λ  
to which the collapse multiplier cλ  has to belong. In particular, sλ  represents an 
approximation of the supremum of the multipliers for which the initial configuration is 
still safe (i.e., 0ˆ 0U = ), whilst mλ  represents an approximation of the infimum of the 
multipliers for which the structure becomes a mechanism (i.e., 0ˆ 0U ≠ ). 

6.1 Case A: distributed horizontal load 

The NRNT portal, discretised with 384 9-nodes square elements (a second order 
Lagrangian quadrangular element), is loaded on the top edge by a piecewise uniformly 
distributed load q as shown in Figure 11(a). The external horizontal action is represented 
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by the horizontal distribution of loads (represented by strips with arrows) proportional to 
the vertical ones through the scale factor λ  as shown in Figure 11(a). 

Figure 10 Stream plot of the displacement field (a); field 2 ( )TE tr EE=  (b) and rotation field (c) 
over the whole domain. By depicting the positive and negative rotations with two 
different shades of grey, in (d) a neat partition of the whole domain into two rigid 
blocks is identified. The interface among the two blocks is in close agreement with the 
location of the expected crack (see online version for colours) 

 

Figure 11 In (a) the NRNT portal, discretised with 384 9-nodes square elements, is loaded by a 
piecewise uniformly distributed vertical load and by a similar horizontal load 
distribution 0.255q  (represented with the strips with horizontal arrows). In (b) a 
representation of the solution is depicted (see online version for colours) 
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The collapse multiplier cλ  belongs to the interval [ ]0.252 , 0.253  and this range is 
confirmed by applying directly the kinematical theorem on the detected mechanism. The 
solution 0Û  of the minimum problem, corresponding to 0.0253mλ = , obtained with the 
interior point method in 716.78s (with an Intel® Core™ i7-6700HQ) by using 16 tangent 
planes for each node, is shown graphically in Figure 11(b). The streamlines of the 
displacement field are reported in Figure 12. 

Figure 12 The stream plot of the displacement field is reported: the centres of rotation can be 
identified (see online version for colours) 

 

To represent the strain field E , in Figure 13 we report a measure of the deformation, 
namely ( )2 TE tr EE= . 

The skew-symmetric part of the displacement field is depicted Figure 14(a). It should 
be noticed that the gradient of rotation is essentially concentrated along two vertical lines. 
By depicting the positive rotations in light grey and the negative ones in dark grey 
(Figure 14(b)) we obtain a neat subdivision of the domain into three blocks. Such blocks 
deform essentially as rigid bodies since the rotation is piece-wise constant and the 
deformation is practically constant (see Figure 13). 

6.2 Case B: concentrated horizontal load 

The same NRNT portal of Figure 11(a) is still discretised using 384 9-nodes square, and 
also in this case the vertical load is applied on the top edge trough a piecewise uniformly 
distributed load q as shown in Figure 15(a). The external horizontal action is here 
represented by the force Qλ  where Q  is equal to the resultant of the acting vertical loads 
and λ  is the scale factor. 
 
 



   

 

   

   
 

   

   

 

   

    Crack patterns identification in masonry structures 313    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 13 The field 2 ( )TE tr EE=  is reported (see online version for colours) 

 

Figure 14 In (a) the rotation field over the whole domain. In (b) by depicting the positive rotations 
in light grey and the negative ones in dark grey, a neat partition of the whole domain 
into three rigid blocks can be seen (see online version for colours) 

 
The collapse multiplier cλ  belongs to the interval [ ]0.31 , 0.32  as can be checked 
applying directly the upper bound theorem on the detected failure mechanism. As in the 
previous case, these last values are supported by the direct analysis of the kinematical 
theorem on the identified mechanism of failure. The solution 0Û  of the minimum 
problem, obtained with the interior point method in 628.54s (with an Intel® Core™ i7-
6700HQ) by using 16 tangent planes for each node, is shown graphically in Figure 15(b). 
The streamlines of the displacement field are reported in Figure 16. 

To represent the strain field E , in Figure 17 we report a measure of the deformation, 
namely 2 ( )TE tr EE= . 
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Figure 15 In (a) the NRNT portal, discretised with 384 9-nodes square elements, is loaded by a 
piecewise uniformly distributed vertical load and by a similar horizontal force Qλ . In 
(b) a representation of the solution corresponding to 0.32λ =  is depicted (see online 
version for colours) 

 

Figure 16 Stream plot of the displacement field: the rotation centres are easily identified  
(see online version for colours) 

 

The skew-symmetric part of the displacement field is depicted in Figure 18. It should be 
noticed that the gradient of rotation is essentially concentrated along two lines.  
By depicting the positive rotations in light grey and the negative ones in dark grey  
(Figure 18(b)), we obtain a neat subdivision of the domain into three blocks.  
As in the previous case, such blocks deform essentially as rigid bodies since the  
rotation is piece-wise constant and the deformation is almost everywhere constant  
(see Figure 17). 
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Figure 17 Representation of the field 2 ( )TE tr EE=  (see online version for colours) 

 

Figure 18 In (a) the rotation field over the whole domain. In (b) by depicting the positive rotations 
in light grey and the negative ones in dark grey, a neat partition of the whole domain 
into three rigid blocks can be seen (see online version for colours) 

 

7 Example 4: a double portal under horizontal action 

In this section, we present a different application of the C° method: a double portal 
subjected to a horizontal action modelled as horizontal linear displacement. 

A NRNT double portal, discretised using 768 9-nodes square elements (a second 
order Lagrangian quadrangular element), is loaded vertically by two piecewise uniformly 
distributed loads, whilst the horizontal action is modelled by a linear displacement 
imposed to the left side of the structure as shown in Figure 19(a). 
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Figure 19 In (a) the NRNT double portal, discretised with 768 9-nodes square elements, is loaded 
by a piecewise uniformly distributed load and is subjected at left side to a linear 
distribution of displacements. In (b) a representation of the solution is depicted  
(see online version for colours) 

 

The solution 0Û  of the minimum problem is reached through the minimisation of the 
energy into the finite element space defined previously (see Section 3). The solution 
obtained with the interior point method in 600s (with an Intel® Core™ i7-6700HQ) is 
shown graphically in Figure 19(b). The horizontal component of the displacement 
corresponding to the solution 0Û  is reported in Figure 20: the gradient of the 
displacement field is concentrated essentially along lines. 

Figure 20 Graph of the horizontal component of the displacement field corresponding to the 
solution 0Û  (see online version for colours) 
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The skew-symmetric part of the displacement field (representing the local rotation) is 
depicted in Figure 21(a). It should be noticed that the gradient of rotation is essentially 
concentrated along lines (Figure 21(a)). From the stream plot of the displacement field 
over the whole domain (Figure 21(b)) the centres of rotation can be clearly identified. By 
depicting the positive rotations in light grey and the negative ones in dark grey  
(Figure 22(a)), we obtain a neat subdivision of the domain into five blocks Figure 22(b). 
Such blocks deform essentially as rigid bodies since the rotation and the deformation are 
piecewise constant. Notice that the strain, though we are using continuous functions, is 
practically all concentrated on lines. 

Figure 21 Rotation field over the whole domain: (a). Stream plot of the displacement field: (b) 
(see online version for colours) 

 

8 Example 5: validation of the C° method with an experimental test 

This final example concerns a full-scale masonry wall subjected to fixed vertical loads on 
the piers and to an in-plane, gradually increasing, horizontal force as sketched in  
Figure 23(a). The panel has been experimentally tested by Augenti et al. as reported in 
Augenti et al. (2010). A comparison of the results of the proposed model with the 
experimental ones is carried out providing a validation of the proposed approach.  
For brevity, we omit the details of the experiments, making reference directly to  
Augenti et al. (2010). In particular the values of the given vertical loads, the way such 
loads are transmitted to the panel, and the constraint conditions considered at the base of 
the piers, resemble closely those adopted in the test. 

The solution 0Û  of the minimum problem obtained with our numerical method is 
represented pictorially in Figure 23(b) together with the value of the load producing the 
activation of the mechanism (180 kN). 
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Figure 22 By depicting the positive rotations in light grey and the negative ones in dark grey (a),  
a neat partition of the whole domain into five rigid blocks can be seen (b) (see online 
version for colours) 

 

Figure 23 Masonry panel (experimentally tested, see Augenti et al. (2010): geometry, vertical and 
horizontal loads and discretisation (a); representation of the solution 0Û  in terms of 
displacements (b) (see online version for colours) 

 

Figure 24 shows the post-processing of the solution. More specifically, Figure 24(a) 
depicts the contour plot of ( )2 TE tr EE= , Figure 24(b) represents the stream plot of the 
displacement field, Figure 24(c) plots the rotation field whose signs are reported in  
Figure 24(d). From these figures we see that the C° model allows to detect in clear 
manner the rigid blocks and the strain concentration, the collapse mechanism of the 
structure under horizontal actions and a clear localisation of cracks 
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Figure 24 Post-processing of the solution: representation of the field 2 ( )TE tr EE=  (a), stream 
plot of the displacement field (b), sketch of the rotation field (c), signs of the rotations: 
light grey (piers) clockwise and dark grey (spandrel) counter-clockwise (d) (see online 
version for colours) 

 

Figure 25(a) shows the mechanism of the structure involving rotations of the piers and of 
the spandrel. In particular, the shape of the cracks and the position of the centres of 
relative rotation suggested by the C° solution, indicate that the spandrel behaves as a 
compressed strut. The corresponding crack pattern resembles closely the one depicted in 
Figure 25(b) that reports the damages observed in the experimental test described in 
Augenti et al. (2010). 

Figure 25 Mechanism predicted by the proposed C° method (a); the rotations of the piers and 
spandrel are consistent with those reported in Figure 24(a), d. Crack pattern observed in 
the experimental test reported by Augenti et al. (2010) (see online version for colours) 

 

In Figure 25(b), a diagonal crack, tracing essentially the boundaries of the diagonal 
compressed strut depicted in Figure 25(a), can be identified. Such cracks are produced by 
small sliding/crushing deformations that develop into the spandrel at high levels of load. 
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Such cracks, that cannot be predicted by our model for which the material is infinitely 
resistant in compression, have scant effect on the overall mechanism of the structure and 
on the associated ‘collapse’ load. More experimental comparisons can be analysed 
adopting the experimental evidences by Beyer and Dazio (2012) and Gattesco et al. 
(2008). 

9 Conclusions 

A computer program detecting the fracture patterns due to a set of settlements/distortions 
applied on a loaded masonry-like structures has been developed and tested. By following 
Heyman hypotheses, masonry is considered as a continuous medium composed of 
unilateral material, perfectly rigid in shortening and perfectly soft in elongation, 
satisfying a normality law, i.e., Normal Rigid No-Tension (NRNT) material. The material 
is rigid in compression, but extensional deformations (fracture), allowed at zero energy 
price, can be either regular or singular; then extensional deformation can appear either as 
concentrated (macroscopic cracks) or diffuse (smeared cracks). The fact that rigid block 
deformation seems to be the preferred failure mode for real masonry structures stems 
from mechanical characteristics, such as toughness, interlocking, finite friction and 
cohesion, which are not inherent to the NRNT model. The equilibrium problem has been 
solved as an energy minimum operating numerically in the set of continuous C° 
displacement fields, by adopting for the geometrical description a classical Finite 
Element approximation and detecting the crack as a system of smeared cracks. 

In real masonry structures, the main question of a fracture investigation is a problem 
of identification, that is consists in identifying the system of settlements and distortions 
on the construction that produced the detected crack pattern. The computer code we have 
developed here, being a deterministic tool able to find the mechanism and the fracture 
pattern due to known kinematical data, can represent an essential device of any specific 
structural identification code. Actually, there are many studies proposing macro-block 
analyses (see for example Sarhosis et al. (2016) and references therein) and there exists 
an extensive literature on the so-called discrete element approximation of real masonry 
structures (the recent book (Drei et al., 2016) may be consulted for reference). The 
present study represents an efficient alternative to more sophisticated numerical models 
(as, described, for example in Milani et al. (2012), Bertolesi et al. (2016), Chiozzi et al. 
(2017) and Addessi and Sacco (2016, 2018)), not requiring any guess concerning the 
partition into macro-blocks, such a partition being actually a result of the analysis. 

Indeed, in the examples that we present, the subdivision into macroblocks can arises 
naturally in solving the minimisation problem. The subdivisions into macro-blocks 
predicted by our analysis in a number of simple examples, is in good agreement with the 
ones which are expected either through analytical solutions or experiments. We must say 
that C° method is more cumbersome numerically with respect to other approximation 
methods, due both to the larger number of constraints and to the finer meshes required for 
the approximation of the large displacement gradients which are necessary to 
approximate macroscopic fractures. With the C° method, the subdivision into blocks 
must be, sometimes, encouraged by applying a fictitious uniform pressure on the whole 
loaded boundary. This pressure, which prevents unbounded elongations at zero energy 
cost, is usually a negligible fraction of the applied loads (two orders of magnitude less 
than the atmospheric pressure). 
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The orientation of the cracks is accurately detected by considering approximate 
solutions based on the C° method, as shown in the reported examples. In particular, an 
application involving a masonry panel experimentally tested has been reported. The 
comparison of the experimental outcomes with the analytical ones confirms the validity 
of the proposed model. 

References 
Addessi, D. and Sacco, E. (2016) ‘Nonlinear analysis of masonry panels using a kinematic enriched 

plane state formulation’, International Journal of Solids and Structures, Vol. 90, pp.194–214. 
Addessi, D. and Sacco, E. (2018) ‘Homogenization of heterogeneous masonry beams’, Meccanica, 

Vol. 53, No. 7, pp. 1699–1717. 
Angelillo, M. (2014) ‘Practical applications of unilateral models to masonry equilibrium’,  

in Angelillo, M. (Ed.): Mechanics of Masonry Structures, Vienna, Springer, pp.109–210. 
Angelillo, M. (2015) ‘Static analysis of a guastavino helical stair as a layered masonry shell’, 

Composite Structures, Vol. 119, pp.298–304. 
Angelillo, M. and Fortunato, A. (2004) ‘Equilibrium of masonry vaults’, in Fremond, M. and 

Maceri, F. (Eds.): Lecture Notes in Applied and Computational Mechanics, Novel Approaches 
in Civil Engineering, Vol. 14, pp.105–111. 

Angelillo, M., Babilio, E. and Fortunato, A. (2005) ‘A numerical method for fracture of rods’, in 
Fremond, M. and Maceri, F. (Eds.): Lecture Notes in Applied and Computational Mechanics, 
Mechanical Modelling and Computational Issues in Civil Engineering, Vol. 23, pp.277–292. 

Angelillo, M., Babilio, E. and Fortunato, A. (2012) ‘Numerical solutions for crack growth based on 
the variational theory of fracture’, Computational Mechanics, Vol. 50, No. 3, pp.285–301. 

Angelillo, M., Babilio, E., Fortunato, A., Lippiello, M. and Montanino, A. (2016) ‘Analytic 
solutions for the stress field in static sandpiles’, Mechanics of Materials, Vol. 95, pp.192–203. 

Angelillo, M., Cardamone, L. and Fortunato, A. (2010) ‘A numerical model for masonry-like 
structures’, Journal of Mechanics of Materials and Structures, Vol. 5, No. 4, pp.583–615. 

Angelillo, M., Fortunato, A., Montanino, A. and Lippiello, M. (2014) ‘Singular stress fields in 
masonry structures: derand was right’, Meccanica, Vol. 49, No. 5, pp.1243–1262. 

Anzellotti, G. (1985) ‘A class of convex non-coercive functionals and masonry-like materials’, 
Annales De l’IHP Analyse Non Linéaire, Vol. 2, No. 4, pp.261–307. 

Augenti, N., Parisi, F., Prota, A. and Manfredi, G. (2010) ‘In-plane lateral response of a full-scale 
masonry subassemblage with and without an inorganic matrix-grid strengthening system’, 
Journal of Composites for Construction, Vol. 15, No. 4, pp.578–590. 

Bathe, K.J. and Wilson, E.L. (1976) Numerical Methods in Finite Element Analysis, Prentice-Hall, 
Englewood Cliffs, New Jersey, USA. 

Bertolesi, E., Milani, G. and Lourenço, P.B. (2016) ‘Implementation and validation of a total 
displacement non-linear homogenization approach for in-plane loaded masonry’, Computers 
and Structures, Vol. 176, pp.13–33. 

Beyer, K. and Dazio, A. (2012) ‘Quasi-static cyclic tests on masonry spandrels’, Earthquake 
Spectra, Vol. 28, No. 3, pp.907–929. 

Brandonisio, G., Lucibello, G., Mele, E. and De Luca, A. (2013) ‘Damage and performance 
evaluation of masonry churches in the 2009 L’Aquila earthquake’, Engineering Failure 
Analysis, Vol. 34, pp.693–714. 

Brandonisio, G., Mele, E. and De Luca, A. (2015) ‘Closed form solution for predicting the 
horizontal capacity of masonry portal frames through limit analysis and comparison with 
experimental test results’, Engineering Failure Analysis, Vol. 55, pp.246–270. 



   

 

   

   
 

   

   

 

   

   322 A. Iannuzzo et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Calderoni, B., Prota, A., Cordasco, E.A. and Sandoli, A. (2016) ‘Seismic vulnerability of 
ancient’masonry buildings and strengthening intervention strategies’, Proceedings of XVI 
IBMAC International Conference, pp.727–736. 

Cennamo, C. and Di Fiore, M. (2013) ‘Structural, seismic and geotechnical analysis of the 
sant’Agostino church in L’aquila’, Revista Ingeniería De Construcción, Vol. 28, No. 1,  
pp.7–20. 

Cennamo, C., Angelillo, M. and Cusano, C. (2017) ‘Structural failures due to anthropogenic 
sinkholes in the urban area of naples and the effect of a FRP retrofitting’, Composites Part B: 
Engineering, Vol. 108, pp.190–199. 

Cennamo, C., Gesualdo, A. and Monaco, M. (2017) ‘Shear plastic constitutive behaviour for near-
fault ground motion’, Journal of Engineering Mechanics ASCE, Vol. 143, No. 9, p.04017086. 

Chambolle, A., Giacomini, A. and Ponsiglione, M. (2007) ‘Piecewise rigidity’, Journal of 
Functional Analysis, Vol. 244, No. 1, pp.134–153. 

Chiozzi, A., Milani, G. and Tralli, A. (2017) ‘A genetic algorithm NURBS-based new approach for 
fast kinematic limit analysis of masonry vaults’, Computers and Structures, Vol. 182,  
pp.187–204. 

Como, M. (1992) ‘On the equilibrium and collapse of masonry structures’, Meccanica, Vol. 27, 
No. 3, pp.185–194. 

Dantzig, G. (1963) Linear Programming and Extensions, Princeton University Press, Princeton, 
New Jersey, USA. 

Dantzig, G.B., Orden, A. and Wolfe, P. (1955) ‘The generalized simplex method for minimizing a 
linear form under linear inequality restraints’, Pacific Journal of Mathematics, Vol. 5, No. 2, 
pp.183–195. 

De Serio, F., Angelillo, M., De Chiara, E., Gesualdo, A., Iannuzzo, A., Zuccaro, G. and  
Pasquino, M. (2017) ‘Masonry structures made of monolithic blocks with an application to 
spiral stairs’, Meccanica, pp.1–21, doi: 10.1007/s11012-017-0808-9. 

Drei, A., Milani, G. and Sincraian, G. (2016) ‘Application of DEM to historic masonries, two case-
studies in portugal and italy: aguas livres aqueduct and arch-Tympana of a church’, 
Computational Modeling of Masonry Structures Using the Discrete Element Method, IGI 
Global, pp.326–366. 

Fortunato, A., Babilio, E., Lippiello, M., Gesualdo, A. and Angelillo, M. (2016) ‘Limit analysis for 
unilateral masonry-like structures’, The Open Construction and Building Technology Journal, 
Vol. 10, Suppl 2: M12, pp.346–362. 

Fortunato, A., De Chiara, E., Fraternali, F. and Angelillo, M. (2015) ‘Advanced models for the 
limit analysis of masonry structures’, COMPDYN 2015, 5th ECCOMAS Thematic Conference 
on Computational Methods in Structural Dynamics and Earthquake Engineering Crete Island 
COMPDYN 2015, pp.3716–3725. 

Fortunato, A., Fabbrocino, F., Angelillo, M. and Fraternali, F. (2018) ‘Limit analysis of masonry 
structures with free discontinuities’, Meccanica, Vol. 53, No. 7, pp.1793–1802. 

Fortunato, A., Fraternali, F. and Angelillo, M. (2014) ‘Structural capacity of masonry walls under 
horizontal loads’, Ingegneria Sismica, Vol. 31, No. 1, pp.41–49. 

Fraldi, M., Nunziante, L., Gesualdo, A. and Guarracino, F. (2009) ‘On the bounding of limit 
multipliers for combined loading’, Proceedings of the Royal Society of London A: 
Mathematical, Physical and Engineering Sciences, Vol. 466, No. 2114, pp.493–514. 

Gattesco, N., Clemente, I., Macorini, L. and Noè, S. (2008) ‘Experimental investigation on the 
behaviour of spandrels in ancient masonry buildings’, Proceedings of 14th WCEE, 12–17 
October, Beijing, China. 

Gesualdo, A. and Monaco, M. (2015) ‘Constitutive behaviour of quasi-brittle materials with 
anisotropic friction’, Latin American Journal of Solids and Structures, Vol. 12, No. 4,  
pp.695–710. 



   

 

   

   
 

   

   

 

   

    Crack patterns identification in masonry structures 323    
 

    
 
 

   

   
 

   

   

 

   

       
 

Gesualdo, A., Cennamo, C., Fortunato, A., Frunzio, G., Monaco, M. and Angelillo, M. (2017) 
‘Equilibrium formulation of masonry helical stairs’, Meccanica, Vol. 52, No. 8,  
pp.1963–1974. 

Gesualdo, A., Iannuzzo, A., Monaco, M. and Penta, F. (2017) ‘Rocking of a rigid block 
freestanding on a flat pedestal’, Journal of Zhejiang University: Science A, pp.1–10,  
DOI: 10.1631/jzus. A1700061. 

Gesualdo, A., Iannuzzo, A., Monaco, M. and Savino, M.T. (2014) ‘Dynamic analysis of 
freestanding rigid blocks’, CIVIL-COMP PROCEEDINGS, Twelfth International Conference 
on Computational Structures Technology, Paper 144. 

Giaquinta, M. and Giusti, E. (1985) ‘Researches on the equilibrium of masonry structures’, Archive 
for Rational Mechanics and Analysis, Vol. 88, No. 4, pp.359–392. 

Heyman, J. (1966) ‘The stone skeleton’, International Journal of Solids and Structures, Vol. 2,  
No. 2, pp.249–279. 

Iannuzzo, A., Angelillo, M., De Chiara, E., De Guglielmo, F., De Serio, F., Ribera, F. and 
Gesualdo, A. (2018) ‘Modelling the cracks produced by settlements in masonry structures’, 
Meccanica, Vol. 53, No. 7, pp.1857–1873. 

Kooharian, A. (1952) ‘Limit analysis of voussoir (Segmental) ‘and concrete archs’, Journal of the 
American Concrete Institute, Vol. 24, No. 4, pp.317–328. 

Livesley, R.K. (1978) ‘Limit analysis of structures formed from rigid blocks’, International 
Journal for Numerical Methods in Engineering, Vol. 12, No. 12, pp.1853–1871. 

Marmo, F., Masi, D. and Rosati, L. (2018) ‘Thrust network analysis of masonry helical staircases’, 
International Journal of Architectural Heritage, DOI: 10.1080/15583058.2017.1419313. 

Marmo, L. and Rosati, L. (2017) ‘Reformulation and extension of the thrust network analysis’, 
Computers and Structures, Vol. 182, pp.104–111. 

Mehrotra, S. (1992) ‘On the implementation of a primal-dual interior point method’, SIAM Journal 
on Optimization, Vol. 2, No. 4, pp.575–601. 

Milani, G. and Lourenço, P.B. (2012) ‘3D non-linear behavior of masonry arch bridges’, 
Computers and Structures, Vol. 110, pp.133–150. 

Monaco, M., Guadagnuolo, M. and Gesualdo, A. (2014) ‘The role of friction in the seismic risk 
mitigation of freestanding art objects’, Natural Hazards, Vol. 73, No. 2, pp.389–402. 

Sarhosis, V., Bagi, K., Lemos, J.V. and Milani, G. (Eds.) (2016) Computational Modelling of 
Masonry Structures Using the Discrete Element Method, IGI Global. 

Simon, J. and Bagi, K. (2016) ‘Discrete element analysis of the minimum thickness of oval 
masonry domes’, International Journal of Architectural Heritage, Vol. 10, No. 4, pp.457–475. 

Vanderbei, R.J. (2014) Linear Programming: Foundations and Extensions, Springer-Verlag,  
New York, USA. 

Wolfram, S. (2003) The Mathematica Book, 5th ed., Wolfram Media. 


