Entropy generation minimisation in a moving porous pipe under magnetic field effect
by Saima Ijaz; Muhammad Mushtaq; Sufian Munawar; Najma Saleem
International Journal of Exergy (IJEX), Vol. 26, No. 4, 2018

Abstract: The second-law aspect of an electrically conducting thermal boundary-layer flow inside a permeable pipe moving along its axis under Joule heating effect is considered here. The governing equations are normalised by suitable similarity transformations and solved analytically. An expression for average entropy number is obtained by integrating entropy number over the entire fluid volume for various cross-sections. Graphical illustrations of spatial distributions of total and average entropy of the system, the Bejan number, isotherms and heat transfer rate are imparted against different parameters of interest. The ranges of variables are reported for which entropy production is minimum. It is shown that the pipe moving with small Reynolds number needs small injection velocity to minimise entropy production in the system.

Online publication date: Fri, 13-Jul-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com