Theoretical and experimental investigation for micro-channel fabrication using low power CO2 laser
by Arif Varsi; Abdul Hafiz Shaikh
International Journal of Materials and Product Technology (IJMPT), Vol. 57, No. 1/2/3, 2018

Abstract: CO2 laser being a localised non-contact type machining process depends on the thermal and mechanical properties of a material to a great extent. The scope of this research is to study the effect of process parameters on channel profile of polymethylmethacrylate (PMMA) by CO2 laser (0-25 W). The parameters selected are beam power and scanning speed, keeping assist gas pressure constant. Using the principle of energy balance and assuming complete evaporation of molten material, an analytical model for the depth of cut is developed by considering Gaussian beam energy distribution in three-dimensional coordinate systems. Experimental results obtained at 5 mm thick plate by varying process parameters were compared with the analytical data showing good convergence with a variation of 1.83%. An attempt is made to analyse the variation of channel geometry as a function of process parameters analytically. The present model was developed with consideration of x, y and z coordinates associated with laser machining process and was validated by experimentation and 2D model available in the literature. It was observed that the proposed model shows good convergence with the experimental values. Hence, the proposed model is found to be suitable for prediction of micro-channel depth with precision.

Online publication date: Tue, 03-Jul-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com