Parametric optimisation in Nd-YAG laser cutting of thin Ti-6Al-4V super alloy sheet using evolutionary algorithms
by A. Tamilarasan; D. Rajamani; Balasubramanian Esakki
International Journal of Materials and Product Technology (IJMPT), Vol. 57, No. 1/2/3, 2018

Abstract: In this paper, genetic and simulated annealing algorithm approaches are proposed for the selection of the optimal values in efficient Nd-YAG laser cutting of thin Ti-6Al-4V super alloy sheet. The pulse width, pulse energy, cutting speed, and gas pressure are considered as process parameters. Response surface methodology based Box-Behnken design is adopted to conduct the experiments for measuring the proposed performance characteristics such as kerf deviation (KD) and metal removal rate (MRR). Quadratic regression models are developed to predict the responses using response surface methodology. Analysis of variance tests have been carried out to check the adequacy of the developed regression models. Based on the developed mathematical models, the interaction effects of the process parameters on KD and MRR are investigated. Minimising KD and maximising the MRR are considered as objectives functions. The optimal laser cutting conditions are obtained to minimise the KD and maximise the MRR in considering single and multi objective optimisation methods. Validation tests with optimal levels of process parameters were performed to illustrate the effectiveness of GA and SA algorithms. It is believed that the used algorithms provide a robust way of looking the optimum process parameters for a selected laser cutting system.

Online publication date: Tue, 03-Jul-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Materials and Product Technology (IJMPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com