Optimal path planning for an autonomous articulated vehicle with two trailers
by Amr Mohamed; Jing Ren; Haoxiang Lang; Moustafa El-Gindy
International Journal of Automation and Control (IJAAC), Vol. 12, No. 3, 2018

Abstract: This paper proposed an optimal path planning algorithm for autonomous vehicle with two trailers in autonomous navigation. The proposed algorithm is based on combination of artificial potential field (APF) method and optimal control theory. A linear two-degree-of-freedom vehicle model with both lateral and yaw motion is derived and simulated in MATLAB environment. The optimal control theory is applied to generate an optimal free-obstacle path of the robotic vehicle from a starting point to the goal location. The obstacle-avoidance technique is mathematically modelled using a potential function based on the proposed sigmoid function. The constructed potential field model can achieve an accurate analytic description of objects in three dimensions. Moreover, the proposed model of potential field requires very modest computation at run time. The APF includes both the attractive (the target) and repulsive (the obstacles) potential fields that will control the steering angle of the vehicle so that it can reach to its target location. Several simulations are carried out to check the fidelity of the proposed technique. The illustrated results demonstrate the generated optimal path of autonomous vehicles with consideration of vehicle dynamics constraints, obstacle avoidance and collision free criteria in reaching the goal location.

Online publication date: Sun, 01-Jul-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com