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Abstract: Knowledge of operators is useful to build the intelligent problem 
solver for knowledge domains about computing. In this paper, we present a 
mathematical approach for building a knowledge model of operators, called 
Ops-model. The foundation of this model includes: concepts, operators, and 
inference rules. Each concept of this model is a class of objects with the 
behaviours for solving problems on themselves. General problems on this 
model are also studied, such as: reducing an expression, prove an equality of 
expressions. The algorithms for solving these problems are also designed.  
Ops-model has been applied to specify a part of knowledge domain about 
vector algebra in high school. It is used to construct a program for solving  
some problems on this knowledge domain. The solutions of this program are 
step-by-step, readable and suitable with the learners’ level. It is useful for 
supporting students to learn this subject. 
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1 Introduction 

Knowledge base and inference engine are important components in intelligent systems. 
Among practical applications, a popular kind of the knowledge is computational 
knowledge domain. This knowledge domain contains the component about operators. It 
helps to improve the accuracy of representation the knowledge of operators between 
objects. There are many methods for knowledge representation, such as: first order logic, 
description logic, rule-based systems, conceptual graph and ontology (Harmelem et al. 
2008; Kent, 2013). Some knowledge models of operators have been proposed and applied 
in the knowledge domains of operators. 

Formal model of knowledge about operators is very necessary for knowledge 
representation. This formal model would be a framework for designing knowledge based 
system of computational knowledge. There are many studies for researching this, but 
most of them have limitations, thus they are very difficult to apply in practice. 

In this paper, a mathematical approach for building the structure of a knowledge 
model of operators has been presented. This model, namely ops-model, represents 
knowledge of operators between objects. The foundation of this model includes concepts, 
operators, and inference rules of knowledge. Each concept is an abstract structure that 
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includes attributes, equation and deductive rules; and objects in concept have been 
equipped behaviour to solve some problems on object. This model also refers to unary 
and binary operators and their characteristics: commutation, association, identity. In 
addition, the definition abut transforming an expression, simpler relation between two 
expressions are presented. The classes of the general problems in the knowledge of 
operators and their specification are also studied in this model. Besides that, the 
algorithms for solving these problems are built and proved their effectiveness. 
Furthermore, ops-model is applied to specify a part of knowledge domain of vector 
algebra in high school and construct an intelligent problem solver for solving some 
problems in this knowledge domain. Its solutions are step-by-step, readable and suitable 
with the learners’ level. 

2 Related work 

Knowledge of operator is a popular form of knowledge domains, especially 
computational knowledge domains. In linear algebra, the operators between matrixes, 
vectors, vector spaces, linear maps are foundation of this knowledge domain (Anton and 
Rorres, 2010). In vector algebra, the summary, inner products, cross product between 
vectors are basic tools for solving the problems in mathematics curriculum (Varberg  
et al., 2003; Vietnam Ministry of Education and Training, 2013). In knowledge domain 
about direct current electrical circuits, the parallel and series connections between 
circuits, capacitors are the operators between these objects (Kuphaldt, 2017). However, 
these current knowledge models are not effective for representation practical 
applications. 

Yang and Cai (2008) built the mathematical structure of knowledge representation 
based on extension rules, which particularly aimed to solve contradiction problems with 
formal model. Nevertheless, the extension rules model was not effective for representing 
real knowledge domains and this model also did not include operators. 

The authors represent a method to simplify trigonometric expressions by using 
combination rules (Fu et al., 2006). However, the knowledge base of this method is setup 
by rule-based system, thus it can only be used for trigonometric polynomials. This model 
still has many limitations. In particular, it has not yet considered to represent the 
knowledge of operators. 

Grefenstette (2013) and Sakama et al. (2017) use the linear algebraic approach to 
represent the operators in logic. These operators and their relations are represented by the 
matrixes and tensors. Nonetheless, these methods cannot use to represent the 
transforming of a logical expression and the application of them to represent the real 
knowledge domain is difficult. 

Besides, some methods for automated theorem proving have been studied, such as: 
using Groebner bases (Roanes-Lozano et al., 2009), algebraic structure based on temporal 
logics (Cordero, 2004), etc. However, these methods cannot represent knowledge 
domains precisely. In addition, they also cannot perform the way of human’s thinking to 
solve problems. 

The other research, Knyazhansky (2012) solved the problem about the information 
equivalence of knowledge by constructing the automorphic of knowledge-base. 
Nonetheless, the knowledge domain in this study is too simple to apply in practice. 
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Recently, the research in Wang (2015) has built an algebraic structure for concepts 
with relational operators and compositional operations between concepts. This paper 
develops a visualised knowledge representation tool for concept algebra. Besides that, the 
authors in (Valipour and Wang, 2016) improved the formal properties and rules of the 
relational, reproductive, compositional operations of formal concepts. These properties 
can be applied for cognitive machine learning. However, these results are theoretical 
foundation, they have not yet been applied in practical application. 

In the other research, Tulceanu (2016) used concept algebra for designing a reasoning 
mechanism on images. However, this application does not consider the problems  
about computation and operators, thus it cannot apply for knowledge domain about 
computation. 

The COKB model has been used to perform many kinds of practical knowledge 
domains and to construct intelligent systems (Do, 2015). Nevertheless, the operator’s 
component was not sufficiently studied in COKB. Do and Nguyen (2015) have presented 
a reduce model of COKB. This model improved the operators’ component in COKB, and 
it also solved problems such as: specification of operators and object determination. This 
model has been applied to represent the knowledge about direct current electrical circuits. 
Nonetheless, the components of this model have not yet been described in detail; some 
operator-related problems were not solved: Reducing an expression and Transforming an 
expression. 

3 Knowledge model of operators 

The knowledge of operators between objects plays an important role in real knowledge 
domains, especially computational knowledge. In this section, a knowledge model about 
operators is presented. This model includes concepts, operators, and inference rules of 
knowledge. 

In this paper, some symbols are used: 

Ñ : set of real numbers 

var(u): set of variables in express u 

The knowledge model about operators, called ops-model, consists of three components: 

= (C, Ops, Rules)K  

In which, C is a set of concepts, each concepts in C is a class of objects with their 
behaviours to solve problems on themselves. R is a set of relations on the concepts. Ops 
is a set of operators; each operators is a unary or binary mapping, we consider the 
properties of it are: commutative, associative, identity. Rules is a set of inference rules. A 
rule in this model is one of two forms: deductive rule and equivalent rule. 

3.1 The components in ops-model 

3.1.1 Structure of components 

The components of ops-model have been modelled as followed table. 
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Table 1 Structure of ops-model 
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Table 1 Structure of ops-model (continued) 
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3.1.2 Length of expression 

Definition 3.1: definition of expression 

<expr>::= o | ⊕ <expr> | <expr>⊗<expr> 

o: object 

⊕: unary operator ⊗: binary operator 

If ⊗ is associative then: (p, q, r are expressions) 

p ⊗ q ⊗ r = (p ⊗ q) ⊗ r = p ⊗ (q ⊗ r) 

Definition 3.2: length of an expression 

Let g be an expression, length(g) – length of expression g – is computed like this: 

a if g only has object x then: 

length(g) = 1 if x ∈ Ic and c ∈ C(0) 

length(g) = 2 if x ∈ Ic and c ∈ C(1) 

length(g) = 3 if x ∈ Ic and c ∈ C(2) 

b if g = ⊕ f, which f is expression, and operator ⊕ is an unary operator, then: 

length(g) = length(f) + 1 

if g = f ⊗ h, which f, h are expressions, and ⊗ is a binary operator, then: 

length(g) = length(f) + length(h) 

Definition 3.3: Let p is an expression, we define a tree T(p) to represent p inductively as 
follows: 

a if p is an object, then T(p) is a single node labelled with p 

b if p = ⊕q, where ⊕ is an unary operator and q is an expression, then T(p) is a tree 
with the root labeled with ⊕ whose immediate successor is T(q) 

c if p = q Θ r, where Θ is a binary operator, q and r are expressions, then T(p) is a tree 
with the root labeled with Θ which has two immediate successors T(q) and T(r). 

d  if p = q1 ⊗ q2 …⊗ qk, where ⊗ is a associative binary operator and qj (j = 1 …k) are 
expressions, then T(p) is a tree with ⊗ is the root labelled which has k immediate 
successors T(q1), …, T(qk). 

Definition 3.4: let two logical expressions p and q: 

p is a sub-expression of q ⇔ T(p) is a sub-tree of T(q) 

Definition 3.5: let two expressions p and q, a relation ‘simpler than’ (<<) is a binary 
relation such that: 

Height(T(p)) Height(T(q))
if and only if

length( ) length( )
p q

p q
≤⎧

<< ⎨ ≤⎩
 

with Height(T(expr)) is the height of tree T(expr). 
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The relation ‘simpler than’ has properties are: reflexive and transitive. 

3.2 Unification of facts 

Definition 3.6 

a Classify kinds of facts 

Kind Meaning Specification Condition 

1 Information about object kind x:c x ∈ S*, c ∈ C 
2 Determination an object x x ∈ Ic, c ∈ C 

x ∈ Ic, c ∈ C 3 Determination an object by a value 
or a constant expression 

x = <const> 

<const>: constant 
4 Equality on objects x = y x, y ∈ Ic, c ∈ C 

x ∈ Ic, c ∈ C 5 Dependence of an object by an 
expression. 

x = <expr> 

<expr>: expression 
<expr1>: expression 6 Equality of expressions <expr1> = <expr2> 
<expr2>: expression 

b The unification of two facts 

Give two facts f1 and f2, they are unified, ≅, when they satisfy the following conditions: 
1 f1 and f2 have them same kind k, and 
2 if k = 1, 2: f1 = f2 

if k = 3: 

left(f1) ≅ left(f2) and compute(right(f1)) = compute(right(f2)) 

if k = 4: 

(left(f1) ≅ left(f2) and right(f1) ≅ right(f1)) 

or (left(f1) ≅ right(f2) and right(f1) ≅ left(f2)) 

if k = 5, 6: 

simplify(expand(left(f1) – right(f1) – left(f2) + right(f2))) = 0 or 

simplify(expand(left(f1) – right(f1) + left(f2) – right(f2))) = 0 

which 
• compute(expr): compute the value of the expression expr. 
• simplify(expr): simplify the expression expr. 
• expand(expr): expand the expression expr. 

c Relations on set of facts 

Let x be a fact, A and B are sets of facts, the relations between them have been defined as 
followed: 
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x ʘ A ⇔ ∃ g ∈ A, x ≅ g A  B = {x| x ʘ A ʘ x ʘ B} 

A  B ⇔ ∀x ∈ A, x ʘ B A  B = {x| x ʘ A ʘ x ʘ B} 

A ≅ B ⇔ A  B ˄ B  A A\B = {x| x ʘ A ʘ not(x ʘ B)} 

4 Model of problem and algorithms 

4.1 Model of problem and solution 

Definition 4.1: model of problems 

a Kind 1: model of problems consists of three sets below: 

O = {O1, O2, …, Om}, the set of objects in the problem. 

F = {f1, f2, …, fn}, the set of facts 

G = {‘KEYWORD’: expr} with ‘KEYWORD’ is a keyword of the goal and expr is 
an expression, ‘KEYWORD’ may be the followings: 

• ‘determine’: it means to determine an expression or an object 
• ‘compute’: it means to determine the value of an expression 
• ‘reduce’: it means to reduce the expression. 

The problem will be denoted by (O, F) → G 

b Kind 2: model of problems has the form: 

( , ), →O F E G  

where 

E = {expr1, expr2, …, exprp} is the set of expressions between objects in O. 

G = {‘KEYWORD’: expr} with ‘KEYWORD’ may be the followings: 
• ‘prove’: it means to prove an equality of expressions 
• ‘transform’: it means to transform an object into an expression between certain 

objects. 

Problems in kind 1 with goals are: determine an object and compute values of an attribute 
were studied and solved in Do and Nguyen (2015). In this paper, we will study the 
methods for solving the other problems in kinds 1 and 2. 

Definition 4.2: transform an expression. 

1 Let expr, s, u be expressions. 

Denote: subs(expr, s, u) is a new expression that is substituted u for s in the expression 
expr. 

2 Let f be an expression, f has a sup-expression g and an equivalent rule r. 
• f can be transformed by rule r if g is a side of r. 

a if g = left(r): Let r(f) = subs(f, g, right(r)) 
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b if g = right(r): Let r(f) = subs(f, g, left(r)) 
• OR f can be transformed by rule r if ∃ a variable po in r and an expression eo 

such that g is a side of subs(r, po, eo) 
a if g = left(subs(r, po, eo)): 

Let r(f) = subs(f, g, right(subs(r, po, eo))) 
b if g = right(subs(r, po, eo)): 

Let r(f) = subs(f, g, left(subs(r, po, eo))) 

An object in ops-model has basic behaviours for solving problems on its attributes. 
Determining the closure of a set of object’s facts is most important behaviour. 

Definition 4.3: the closure set of object’s facts: 

Let Obj = (Attrs, EqObj, RulesObj) be an object of a concept in C, and A is a set of facts 
on object Obj 

a if e ⊂ EqObj: e is an equation system between k variables {x1, x2, …, xk} ⊆ Attr 

e can be applied to A if from facts of kind 3, 4 and 5 in A, we have: 
• e can be solved to compute the values of {x1, x2, …, xk}. 

Let e(A) = A  {x1, x2, …, xk} 
• OR e can be produced new relations as equation between {x1, x2, …, xk} 

Let: 

is kind 3

e(A) A subs(e, left( ), right( ))
f A

f

f f
∈

=  

b If g ∈ RulesObj: g is a deductive rule, g has form: u(g) → v(g) 

g can be applied to A if u(g) A.  Let g(A) A v(g)=  

c Let r0(A) = A and s = [r1, r2, …, rm] with rk ∈ RulesObj or rk ⊆ EqObj, s is called 
object deduce if satisfies three conditions: 
1 ∀k, m, rk can be applied to rk–1(A). 

Let rk(A) = rk(rk–1(A)) 
2 ∀r ∈ RulesObj\{r1, r2, …, rm}, r cannot be applied on rm(A). 
3 ∀r ⊆ EqObj\{r1, r2, …, rm}, r cannot be applied on rm(A) 

Let DObj(A) = {s = [r1, r2,…, rm] | s is an object deduce} 

d Let: Obj.Closure(A): = rm(A) 

Obj.Deduce(A): = dA, with dA ∈DObj(A) and card(dA) = min{card(s) | s ∈ DObj(A)} 

Definition 4.4: let knowledge domain K = (C, Ops, Rules) as ops-model, Obj = (Attr, 
EqObj, RuleObj) is an obiect of concepts in C, rule r ∈ Rules and A is a set of facts. 

a Let A|Obj = {f ∈ A | var(f) ⊆ Obj.Attrs} 

Obj(A) = Obj.Closure(A|Obj) 
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b if r ∈ Rulededuce: r has the form: u(r) → v(r) 

r can be applied on A if u(r) A  

Let r(A) A v(r)=  

c if r ∈ Ruleequi: r is an equation of k objects, r has form g(x1, x2, …, xi) =  
h(xi + 1, xi + 2, …, xk) with xi is an object. (i = 1, …, k) 

*r can be applied on A if: 
1 1 2 kcard(A {x , x , , x }) k 1= −K  

Let 1 2 kr(A) A {x , x , , x }= K  

2 OR ∃ f ∈ A, f can be transformed by r. 

Let r(A) A \{f} {r(f )}=  

Definition 4.5: let knowledge domain K = (C, Ops, Rules) as Ops-model, give a problem 
S on Ops-model. Suppose D = [d1, d2, …, dk] is a list of elements which dj ∈ Rules or dj 
∈ O. Denote: F0 = F, F1 = d1(F0), F2 = d2(F1), …, Fk = dk(Fk–1) and D(F) = Fk. 

A problem S is called solvable if there is a list D such that G ⊆ D(F). In this case: 

∀ j = 1, …, k: 

• If dj ∈ Rules 
1 If dj is a deduce rule: stepj = [dj, u(dj), v(dj)] 
2 If dj is an equivalent rule: stepi = [dj, fj, dj(fj)] with fj ∈ Fj–1 and fj can be 

transformed by dj. 

• If dj ∈ O: stepj = [dj, Fj–1, dj(Fj–1)\Fj–1] 

Let Sol = [step1, step2, …, stepk] and Sol is a solution of problem S. 

4.2 Algorithms for solving problem 

Algorithm 4.1: let Obj = (Attrs, EqObj, RulesObj) be an object as section II and A be a 
set of facts related to Obj. This algorithm is determine Obj.Closure(A). 

Input Object Obj = (Attrs, Facts, RulObj), A is a set of facts related to Obj. 

Output Obj.Closure(A). 

Step 0 flag := true; 
 KnownFacts := A; 
Step 1 Searching rules in Obj.RulObj can be applied based on KnownFacts 
 while (flag!=false) do 
  2.1 if (rule r can be found) then 
    for e in v(r) do 
     KnownFacts := KnownFacts  {e}; 
     if (new facts can be determined from KnownFacts) then 
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      Determining new facts from facts in KnownFacts by apply reasoning 
rules; 

     end if; 
    end do; 
   end if; 
  2.2 if (rule r cannot be founded) then 
    flag := false; 
   end if; 
 end do; 
Step 2 Searching rules in Obj.EqObj can be applied 
 flag:=true; 
 while (flag!=false) do 
  flag:=false; 
  for e ⊂ Obj.EqObj do 
   if (e can be applied to KnownFacts) then 
    flag:=true; 
    KnownFacts := KnownFacts  e(KnownFacts); 

   end if; 
  end do; 
 end do; 
Step 3 Obj.Closure(A) := KnownFacts 

Algorithm 4.2: algorithm for proving an equality of expressions 

Let knowledge domain K = (C, Ops, Rules) as Ops-model, and the problem S = (O, F), E 
→ G as definition 3.1b, this algorithm will prove an equality of expressions. The solution 
of problem S has been found though these steps: 

Input (O, F), E → G with E = {f, g} 

Output The solution of the proof: f = g 

Step 0 KnownFacts := F; 
  Sol := [ ]; 
  Solution_found := false; 
  flag:=true; 
Step 1 Use objects in O and facts of KnownFacts to determine the closure of a set of object’s 

facts by using algorithm 4.1 
 while not(Solution_found) do 
  for Obj in O do 
   if (object Obj produces new facts) then 
    KnownFacts := KnownFacts  Obj.Closure(KnownFacts) 
    Sol:= [op(Sol), Obj]; 
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    if (G  KnownFacts) then 

     Solution_found := true; 
    end if; 
   end if; 
  end do; #for 
 end do; #while 
Step 2 Searching rule in Rules-set can be applied based on KnownFacts 
 while (flag!=false) and not(Solution_found) do 
  flag:=false; 
  f1 := f; 
  2.1 if (rule r can be found) and (r ∈ Ruleequi) then 
    flag:=true; Sol:=[op(Sol), r]; 
    if f1 << g then f1 := Expf1; # Expf1 is defined as definition 4.6 
    else f1 := Reduf1; # Reduf1 is defined as definition 4.6 
    end if; 
   end if; 
  2.2 if (rule r can be found) and (r ∈ Rulededuce) then 
    flag := true; 
    Sol:=[op(Sol), r]; 
    for e in v(r) do 
     KnownFacts := KnownFacts  {e}; 
     if (new facts can be determined from KnownFacts) then 
      Determining new facts from facts in KnownFacts by apply 

reasoning rules; 
     end if; 
    end do; 
   end if; 
  2.3 if (G  KnownFacts) then 

    Solution_found := true; 
   end if; 
  2.4 if (rule r cannot be founded) then 
    Flag := false; 
   end if; 
  end do; 
Step 3 if (Solution_found) then 
   From list Sol, build the solution of this problem.; 
  else 
   There is no solution was found; 
  end if; 
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Definition 4.6: let an expression g: 

• Simple_Expand(g) := [r1, r2, …, rk] is a list of equivalent rules in Ruleequi such that: 

( )
0

1
1

with 1,i i
i i i

g g
g g i k

g r g+
−

=⎧
<< =⎨ =⎩

 

Denote: Expg = gk 

• Simple_Reduce(g): = [r1, r2, …, rm] is a list of equivalent rules in Ruleequi such that: 

( )
0

1
1

with 1,i i
i i i

g g
g g i m

g r g+
−

=⎧
<< =⎨ =⎩

 

Denote: Redug = gm 

Algorithm 4.3: Algorithm for reducing an expression 

Let knowledge domain K = (C, Ops, Rules) as Ops-model, give the problem S = (O, F) 
→ G. The problem S has the goal is reducing the expression f, G = {Reduce: expr}, it 
means searching the expression g satisfies: 

expr , exprg and h h g h≡ ∀ ≡ ⇒ <<  

Input (O, F) → G with G = {Reduce: expr} 

Output g 

The idea of this algorithm: this algorithm uses equivalent rules to simplify expression 
expr as simple as possible. We get the new expression, called min. After that, the 
expression min will be expanded and reduced the expansion expression, we get the 
expression h. If the new expression h is simpler than expression min, then record min by 
h. The processing to expand the expression is repeated at most β times (β is constant). 
The final result is expression g. 

Constant β is chosen based on the sample space of common exercises in the 
knowledge domain. For instance, in the knowledge domain about vector algebra, the 
expressions can be simplified at most β times for the expansion. Thus, we choose β = 7.  

Step 1 Setup initial values for variables.   2.2 Simple reducing of temp_expr 
 h:= Redutemp_expr; 
 

//g is a result of simplification 
process of f  

  
Old_expr := Old_expr  {h}; 

  if h << min then 
 

//min is an expression whose 
length is shortest in each step. 

 
  min := h; 

 D:=D ∪ Simple_Reduce(temp_expr);  // D is a list of rules that deduce to 
the solution of the problem. 

  

 count := 0; 
    
 

//Old_expr is a set of old 
expressions 

 
 else 

  g:= expr;    count := count +1; 
  min:=g;   end: # 2.2 
  D:=[ ];   g := h; 
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  Old_expr := {expr};   Go to step 2. 
Step 2  Step 3  
 g := min; 
 

Use the heuristic rule to search the 
equivalent rules for transforming 
an expression. 

  
From list D, build the solution of this 
problem. 

 Combine simple reducing and 
simple expansion until get shortest 
expression or count >β. 

  
return g; 

 2.1 Simple expansion of g.    
  Old_expr := Old_expr  {g}    
  D:= D ∪ Simple_Expand(g);    

  if Expg ∉ Old_expr then    

   temp_expr := Expg;    
  else    
   goto Step 3.    
  end: # 2.1    

4.3 Theorems 

Lemma: given a knowledge domain K = (C, Ops, Rules) as ops-model, and hypothesis 
(O, F) of a problem on this model. There exists an unique maximum set L(O, F) such that 
it contains all expression that can be deduced from (O, F). 

Theorem 4.1: let a knowledge domain K = (C, Ops, Rules) as model of operators, and a 
problem P = (O, F) → G on this model. The following statements are equivalent: 

1 Problem P is solvable. 

2 G ⊆ L(O, F) 

3 There exists a list D such that G ⊆ D(F) 

This theorem shows that forward chaining reasoning will deduce to goals of problems. 
Besides, algorithms 4.1 and 4.2 were designed based on forward chaining reasoning, so 
this theorem is ensure the effectiveness of these algorithms. 

Theorem 4.2: give the problem P = (O, F) → G in knowledge model of operators, with G 
= ‘reduce: expr’. The complexity of algorithm 4.3 to solve this problem is: 

( )2.( )O n l d+  

In which 

l = length(expr) 

n = number of equivalent rules in rules-set. 

d = max{abs(length(left(r)) – length(right(r))) | r is an equivalent rule} 
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5 Applications 

5.1 Design knowledge base of vector algebra 

Based on knowledge about vector algebra in high school has been mentioned in textbook 
of (Vietnam Ministry of Education and Training, 2013), a part of this knowledge domain 
can be represented by Ops-model. This knowledge base has also been used to build the 
program for solving the problems about vector expressions automatically. 

1 C–set of concepts: the set C consists of concepts such as ‘point’, ‘vector’, ‘segment’, 
‘triangle’ and ‘quadrangle’. 

Eg. 4.1: C(0) = {ℜ, POINT, LINE} 

C(1) = {SEGMENT, VECTOR} 

Concept VECTOR ∈ C(1) has structure: 

Attrs = {_A, _B, module}, which: 

_A, _B: POINT 

module:Ñ ; 

EqObj = {module = Segment(_A,_B)} 

RulesObj = { } 

C(2) = {ANGLE, TRIANGLE and types of it, QUADRANGLE and types of it, 
CIRCLE, …} 

Concept PARALLELOGRAM ∈ C(2) consists of: 

Attrs = {A, B, C, D, a, b, c, d, S, p...} 

A, B: POINT  

a, b, c, d: SEGMENT  

S, p: ℜ 

EqObj = {Angle(A)+ Angle(B)+ Angle(C)+ Angle(D) = 360, 

, ,

, }

AB DC AD BC

AC AB AD BD BA BC

= =

= + = +

uuur uuur uuur uuur

uuur uuur uuur uuur uuur uuur
K

 

RulesObj = {{a = b}→ {ABCD: RHOMBUS}, 

{e = f} → {ABCD: RECTANGLE}} 
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Figure 1 Parallelogram 

 

2 Ops–set of operators between concepts 

Ops-set includes these operators as followed: 
Table 2 Operators in vector algebra 

Operator Meaning Arguments Return Properties 

+ Sum of vectors Vector × Vector Vector Commutative 
associative identity 

* Product between a real 
number and a vector 

Ñ × Vector Vector  

. Inner product of vectors Vector × Vector Ñ  Commutative 

o Cross product of vectors Vector × Vector Vector  

3 Rules-set: rules in this model are classified of two forms: deductive rules and 
equivalent rules. 
a Some deductive rules in rules-set 

R1: {AB: segment, M: point, M midpoint AB} 

{ }10,
2

MA MB AM MB AB→ + = = =
uuur uuur r uuuur uuur uuur

 

R2: {u, v: vector, u ⊥  v} → {u.v = 0} 

R3: {a,b,c: vector, c = a o b} → {c ⊥  a, c ⊥  b} 

R4: {ABC: triangle, G: Point, G center of ABC} → { 0}GA GB GC+ + =
uuur uuur uuur r

 

R5: {ABC: triangle, M: Point, N: Point, M is midpoint AB, N is midpoint AC} 

{ }1
2

MN BC→ =
uuuur uuur
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b Some equivalent rules in rules-set 

R6: A, B: Point,  AB BA= −
uuur uuur

 

R7: A, B, C: Point,  AB BC AC+ =
uuur uuur uuur

 

R8: u: vector, u2 = u.u = (u.module)2 

R9: u, v: vector,  u.v = u.module * v.module * cos(u, v) 

R10: u, v: vector,  uov = –vou 

5.2 Design the inference engine of system 

Model of problem in this knowledge base is defined as definition 4.1. This inference 
engine can solve the practical problems with the solutions are naturally alike those of 
human. Besides the above algorithms in Section 4.2, the program has been integrated the 
heuristic rules for searching the solutions of the problems. 

5.2.1 Heuristic rule about using sample problems 

When dealing with a practical problem, a convenient way to proceed is considering 
whether we have met a similar or related problem before or not. If so, then the solution 
for the practical problem can be obtained effectively by using the results of the related 
problem. The related problems are called sample problems (Do et al., 2013). 

In the knowledge domain about vector algebra, the transforming on common 
expressions has been uses as the sample problems in the processing of the expression. 
Via this transforming, the algorithms can speed up to search the solution of the problems. 
Some transforming for common expressions is as followed: 

Eg. 4.2: some of sample problems have been used in this heuristic rule: 

a (SP1): A, B, M: point 
2 2

2

2 2

( )

2. .

AB AB

AM MB

AM MB AM MB

=

= +

= + +

uuur uuur

uuuur uuur

uuuur uuur uuuur uuur
 

b (SP2): u,v, t: vector, v + t = 0
r

 

. . .( )

. 0

0

u v u t u v t

u

+ = +

= ⋅

=

r

r
 

5.2.2 Arrange the order of rules in priority 

When dealing with a practical problem, this heuristic rule arranges the order of inference 
rules in knowledge base to apply. This arrangement will prioritise to apply the rules 
which related with the facts in the practical problem. By using this heuristic rule, the 
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processing of the program can omit the rules that do not need for solving the current 
problem. 

For designing inference engine of this system, determination the list of rule can be 
done by these steps: 

Input FactSet: set of currently facts in searching processing 

Output ListRules: list of rules may be applied 

Stage 1 Choose the rules in rules-set may be applied 
 • Determine structure of rule r in rules-set 
 • Based on FactSet and hypothesis of rule r, make facts database to store information 

about facts in hypothesis. 
 • Using Sort Merge Joint to make a joint between facts database by the same 

columns. 
 • If result of joint is not NULL then r may be applied, so record rule r into ListRules. 
Stage 2 Arrange the order of ListRules 
 • Sorting the rules in ListRules by: 
 • Number of the facts in rule that related with the facts in FactSet. 
 • If the rules are equivalent rules, sorting by the simpler (<<) relation 
 • If the rules are deductive rules, the rules about midpoint, perpendicular or parallel 

are priority. 

5.3 Testing and experiments 

5.3.1 Result of testing 

The program for solving problems about Vector Algebra has been tested to solve the 
exercises in the curriculum of the high-school mathematics in Vietnam (Vietnam 
Ministry of Education and Training, 2013). Via the structure of this knowledge base, the 
problems have been solved by using the transforming steps, replacement and deductive 
rules. The solutions are step-by-step and readable. The reasoning uses the knowledge of 
the student about this course. This program can solve some basic and advanced exercises. 
It is useful for the studying of the students in Vector Algebra at the high school. 

Eg. 4.3: (Prob. S1) let triangle ABC and point G be a centre of this triangle. Let point M. 
Prove: MA2 + MB2 + MC2 = GA2 + GB2 + GC2 + 3MG2 

1 Specification of problem: 
• O:= {ABC: triangle, G: point, M: point} 
• F:= {G centre of ABC} 
• E:= {MA2 + MB2 + MC2, GA2 + GB2 + GC2 + 3MG2} 
• G:= Prove: MA2 + MB2 + MC2 = GA2 + GB2 + GC2 + 3MG2 

2 Solution of program: 
2 2 2MA MB MC+ +  



   

 

   

   
 

   

   

 

   

   56 H.D. Nguyen et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 2 2 2
MA MB MC+ +
uuur uuur uuuur

 apply rule R8 

2 ( ) ( ) ( )
2 2 22

MG GA MG GB MG GC+ + + + +
uuuur uuur uuuur uuur uuuur uuur

 
apply rule R7 

3 2 2 2 2
3 2. . 2. . 2. .MG GA GB GC MG GA MG GB MG GC+ + + + + +
uuuur uuur uuur uuur uuuur uuur uuuur uuur uuuur uuur  

4 ( )2 2 2 2
3 2. .MG GA GB GC MG GA GB GC+ + + + + +
uuuur uuur uuur uuur uuuur uuur uuur uuur

  

5 2 2 2 2
3 2. .0MG GA GB GC MG+ + + +
uuuur uuur uuur uuur uuuur r

 apply rule R4 

6 2 2 2 23MG GA GB GC+ + +  apply rule R8 

In this example, steps 1–3 are applied the sample problem SP1 to expand the expression. 
After that, steps 4–6 are applied the sample problem SP2 to simplify the expression in 
step 3. Thus, this example can be solved fast. 

Eg. 4.4: (Prob. S2) let parallelogram ABCD. Denote I is a midpoint of segment CD. 

Transform: BI
uur

 into an expression of AB
uuur

 and AD
uuur

 

1 Specification of problem: 
• O:= {ABCD: parallelogram, I: point} 
• F:= {I midpoint CD} 
• E := {} 

• G:= Transform: BI
uur

 by ,AB AD
uuur uuur

 

2 Solution of program: 

1 BI BA AD DI= + +
uur uuur uuur uuur

 apply rule R7 

2 BA AB= −
uuur uuur

 apply rule R6 

3 {DC:segment, I: point, I midpoint CD} { }1
2

DI DC→ =
uuur uuur

 apply rule R1 

4 1
2

BI AB AD DC+ = +
uur uuur uuur uuur

 
 

5 {ABCD: parallelogram} { }DC AB→ =
uuur uuur

 properties of the 
parallelogram 

6 1
2

BI AB AD AB= − + +
uur uuur uuur uuur

 
 

7 1
2

BI AB AD= − +
uur uuur uuur

 
 

5.3.2 Experiments 

The exercises are collected from the workbook of Ministry of Education and Training 
(2013). They are classified to these kinds. 
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• Kind 1: reduce an expression of vectors. 

• Kind 2: prove the equation between two expressions. 

• Kind 3: compute the value of an expression. 

• Kind 4: transform a vector into an expression between certain vectors. 

With the other programs for solving vector problems, they only solve the problems about 
vector calculator. Symbolab (2017) can solve many kinds of problems in mathematics, 
but it only solves the vector problems about computing the value of a simple expression. 
(Woflfram|Alpha, 2017) can illustrate the results of vector calculator however they are 
not the solution of the problems for the students. 

The results for solving these kinds of problems are as this followed table. 
Table 3 The ability for solving problems of the systems 

Problem Kind 1 Kind 2 Kind 3 Kind 4 Total 
Number of problems  20 21 15 7 63 

Program for solving problems 
about vector algebra 

17 15 13 6 51 

Symbolab 5 3 7 0 15 

Number of 
problems 
can be 
solved 

Wolfram|Alpha 6 3 7 0 16 

This program has been also examined by 161 students of three high-schools: two schools 
in Ho Chi Minh City and one school in Binh Duong province, Vietnam. This survey is 
also interested in four criteria: user-friendly interface, sufficient knowledge base, the 
ability to solve problems and usefulness. 

Firstly, each student chooses four exercises in the exercises which can be solved by 
the program (51 problems), each kinds is one exercise. They receive the solutions of them 
from the program. Secondly, they are requested to input other three exercises by 
specification language, and the program shows the solutions of them. Based on these 
results, the students evaluate this program by four criteria with level from 1–5, 
respectively very bad–very good. The result of this survey is as followed: 
Table 4 Result of the survey 

Level 
(Very bad → very good) Criterion 

1 2 3  4 5 
User-friendly interface 19%  81% 
Sufficient Knowledge 21%  79% 
Ability to solve problem 20%  80% 
Usefulness 19%  81% 

As the result of this survey, our program meets the requirements of an intelligent problem 
solver in education (VanLehn, 2006). It is useful for supporting high-school students to 
learn about vector algebra. The program has a sufficient knowledge base to solve the 
common problems in this knowledge domain. Its solutions like the solving method of 
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human. They include reasoning steps which are suitable with the knowledge’s level of the 
students. Hence, the students can use this program for their studying. 

6 Conclusions 

In this paper, a mathematical structure of knowledge model of operators is presented, 
namely Ops-model. The foundation of this model has three components: concept, 
operators between concepts and rules. Each concept is an abstract structure that includes 
attributes, equation and deductive rules and objects in concept have been equipped 
behaviours to solve some problems on object. Ops-model is effective in formally 
representing the knowledge of operators. The model problems in kinds 1 and 2 have been 
studied. The algorithms are also designed to solve problems: problems of reducing an 
expression, proving an equality of expressions and transforming an object into a 
expression of certain objects. These algorithms are also proved their effectiveness. 

Ops-model is useful tool for designing practical knowledge bases, especially 
knowledge domains of computing. It has been applied to specify a part of the knowledge 
domain about vector algebra in high school. The program for automatic solving some 
problems on this knowledge domain has been built, such as: reduce a vector expression, 
prove the equation between two vector expressions, compute the value of an expression 
and transform a vector into an expression between certain vectors. The system provides 
readable and human-alike solutions. These solutions can be understood by the high 
school students and their reasoning is suitable with the learner’s level. 

In the future, we will continue to complete the knowledge model of operators and 
solve some problems of operators such as: solving equations systems between objects. 
Besides, the combined model of ops-model and the knowledge model of relations 
(Nguyen et al., 2015) will be more suitable for real applications. It will become the 
foundation of general knowledge model. 
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