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Abstract: In this paper an inventory system for non-instantaneous deteriorating 
items with imprecise deterioration free time is developed. We adopt a price and 
advertisement frequency dependent demand function, and in order to reach a 
general framework, arbitrary functions of deterioration and holding cost rates 
are hired. The major objective is to determine the optimal selling price, the 
optimal replenishment cycle and the optimal frequency of advertisement such 
that, the total profit is maximised. In order to determine the optimal solution 
several theoretical results are derived which indicate existence and uniqueness 
of the optimal solution. Thereafter, based on these theoretical results an 
iterative solution is developed. Finally, numerical examples are provided to 
demonstrate solution procedure, then sensitivity analysis is performed, it is 
shown that optimal policy under uncertain environment and crisp environment 
are identical and finally some managerial insights are proposed. 
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1 Introduction 

In modern economical environment, marketing activities play an important role in 
ensuring customer satisfaction, increasing the level of demand and the revenue of 
business sectors. As well as the importance of determining marketing policies such as 
frequency of advertisement and specially determining optimal selling price, inventory 
control policy is also a crucial element in improving the performance and profitability of 
business sectors. When the items are deteriorating the importance of these factors is 
increased. In literature, deterioration is defined as decay, damage, spoilage, evaporation, 
obsolescence, loss of utility, or loss of marginal value of commodity, which decreases 
usefulness. Electronic goods, blood banks, medicine, fashionable items are instances for 
deteriorating items. For the first time a model with exponentially decaying inventory was 
presented by Ghare and Scharder (1963). Covert and Philip (1973) extended that model 
hiring two parameter Weibull’s distributed deterioration rate. Philip (1974) stated the 
cases in which two parameter Weibull’s distributed deterioration rate is insufficient and 
introduced three parameter Weibull’s distributed deterioration rate. A comprehensive 
review of the literature on deteriorating items is provided by Goyal and Giri (2001). 

It is observed that majority of commodities have a time span for maintaining quality 
or freshness, during which no deterioration occurs. This phenomenon is known as "non-
instantaneous deterioration". In the real world almost goods, such as first hand vegetables 
and fruits, fashionable items and electronic products have a time span in which no 
deterioration occurs. Therefore, in order to reach appropriate decision for replenishment 
policies, the inventory problem for non-instantaneous deteriorating items must be 
considered. A model with non-instantaneous deteriorating items was initially proposed by 
Wu et al. (2006). They considered a stock dependent demand and partial backlogging in 
their modelling. Afterwards several researches like Ouyang et al. (2008), Chang et al. 
(2010), Maihami and Kamalabadi (2012), and Musa and Sani (2012) have investigated 
non-instantaneous deteriorating items under different conditions. 

As aforementioned, price plays an important role in success of a business. Wee 
(1997) formulated an optimal replenishment policy for deteriorating items with varying 
deterioration rate in which demand is a linear function of price. Abad (2003) developed a 
joint pricing and lot-sizing with consideration of perishability, finite production rate and 
partial backlogging. Dye et al. (2007) presented a joint pricing and ordering policy for 
deteriorating items with partial backlogging in which backlogging rate depends on the 
total number of customers in waiting line. A joint pricing and replenishment policy for 
non-instantaneous deteriorating items with price sensitive demand was developed by Wu 
et al. (2009). Sana (2010) established an order quantity model for deteriorating items with 
price dependent demand and partial backlogging. Begum et al. (2012) developed an 
inventory control policy for deteriorating items with Wiebull’s distributed deterioration 
rate and price dependent demand. Zhang et al. (2014) formulated and solved a joint 
pricing and replenishment model for deteriorating items with preservation technology 
investment. Their model enables the retailer to determine its selling price, the length of 
replenishment cycle and the technology investment. Maihami and Karimi (2014) 
developed a joint pricing and replenishment policy for non-instantaneous deteriorating 
items. They considered promotional efforts and price dependent stochastic demand  
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function in their modelling. Soni and Patel (2013) studied a joint pricing and 
replenishment policy for non-instantaneous deteriorating items with imprecise 
deterioration free time and they applied triangular fuzzy number to characterise the length 
of deterioration free time. Soni (2013) extended the work of Chang et al. (2010) from to 
aspects, he discussed a model in which delay in payment is permissible, and moreover he 
considered price and stock sensitive demand. Afterwards, Wu et al. (2014) developed the 
study of Soni (2013) by adding ending inventory as salvages and considering all possible 
replenishment cycle time. Khurana and Chaudhary (2016) presented an optimal pricing 
and ordering policy for deteriorating items with partial backlogging. In their study 
demand rate is a function of stock level and selling price. Taleizadeh et al. (2015) 
developed pricing and ordering decisions in a supply chain with inspection under 
buyback of defective items and imperfect quality items. Shah et al. (2016) formulated and 
solved a joint dynamic pricing and ordering policy for deteriorating items. They 
considered trapezoidal demand rate and assumed controllable deterioration rate in their 
study. Taleizadeh et al. (2017) studied the price effect by developing a model when 
announced price increase occurs. They also considered probabilistic replenishment 
intervals and partial backordering. In another study, Tavakoli and Taleizadeh (2017) 
developed a model for deteriorating items in which full payment scheme is allowed. 

Another marketing parameter which has become prevalent in business world is 
advertisement. Advertisement significantly affects the demand rate and the profit of the 
inventory system. Urban (1992) developed an economic production quantity (EPQ) in 
which demand is a function of selling price and advertisement. Urban and Baker (1997) 
studied a single period environment, where demand is a function of price, time and level 
of inventory. In that model unsold items at the end of season are sold at the lower price. 
Tan et al. (2003) developed a deterministic inventory model, in which demand is a 
function of price, advertisement expenditure and on hand inventory. Shah et al. (2013) 
considered an inventory system for non-instantaneous deteriorating items for optimising 
inventory and marketing policy. In that paper demand is a function of selling price and 
advertisement. In addition, they considered generalised deterioration and holding cost 
rates. Taleizadeh et al. (2013) developed an inventory control model to obtain the optimal 
order and shortage quantities for a perishable item when the supplier proffers special sale. 
Geetha and Udayakumar (2016) discussed an inventory model for non-instantaneous 
deteriorating items in which demand is a function of selling price and advertisement. 
They considered salvage value for deteriorating items and in their model shortages are 
partially backlogged. A joint dynamic pricing and replenishment policies for non-
instantaneous deteriorating items was developed by Rabbani et al. (2016). They discussed 
simultaneous physical and quantity deterioration and time-dependent inventory holding 
cost in their study. 

An appropriate marketing and inventory policy for non-instantaneous deteriorating 
items with imprecise deterioration free time and generalised type deterioration and 
holding cost rates is presented in this paper. The main objective is to simultaneously 
determine the optimal selling price, the optimal length of replenishment cycle, the 
optimal advertisement frequency and order quantity. To the best of our knowledge this 
study is the first analysis to jointly consider optimising marketing and inventory policy  
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for non-instantaneous deteriorating items with imprecise deterioration free time and 
generalised type deterioration and holding cost rates. 

The remainder of the paper is structured as follows. In Section 2, assumptions and 
notations are provided. In Section 3, crisp and fuzzy inventory models are developed. 
Section 4 explains solution procedure. Some numerical examples and sensitivity analysis 
are presented to illustrate the model in Section 5. Finally, Section 6 finishes the paper 
with concluding remarks. 

2 Assumptions and notations 

The mathematical model in this work is developed on the basis of following assumptions 
and notations. 

2.1 Assumptions 

1 The inventory system under consideration deals with single non-instantaneous 
deteriorating items. 

2 The time horizon is infinite and a typical planning schedule of cycle of length T is 
considered. 

3 Replenishment is instantaneous and the lead time is taken negligible. 

4 Demand rate D(A, p) is a function of marketing parameters which are frequency of 
advertisement (A) and the selling price (p). In this paper the power form of the 
selling price and the frequency of advertisement are assumed for the demand 
function, i.e., D(A, p) = Aη ap–b where a(> 0) is the scaling factor, b(> 1) is the index 
of price elasticity, and η is the shape parameter, where 0 ≤ η  < 1. (Shah et al., 2013) 

5 The length of deterioration free time td, is imprecise per se and defined by triangular 
fuzzy number 1 2( , , ),td td τ td td τ  where 0 < τ1 < td and 0 < τ2. τ1 and τ2 are 
decided by decision maker intrinsically. td is characterised through fuzzy number, 
since triangular fuzzy numbers are easy to handle when analytical solutions are 
preferred. After td the on hand inventory deteriorates with variable rate θ(t), where  
0 < θ(t) < 1. 

6 Deteriorated units are not repaired or replaced during the period under consideration. 

7 Shortages are not allowed to avoid the lost sales. 

8 The system operates for an infinite planning horizon. 

2.2 Notations 

k The ordering cost per order 

td The length of deterioration free time 
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A Frequency of advertisement per cycle 

G Cost for each advertisement 

C The purchasing cost per unit 

p The selling price per unit 

h(t) Unit holding cost per unit at time t 

Q The order quantity 

T Length of replenishment cycle (T ≥ td) 

θ(t) The deterioration rate of the on-hand inventory over [td, T] 

I1(t) The inventory level at time t (0 ≤ t ≤ td) when the product has no 
deterioration 

I2(t) The inventory level at time t (0 ≤ t ≤ td) when the product has 
deterioration 

Π(A, p, T) The total profit per unit time of inventory system. 

3 Model formulation 

3.1 Crisp inventory model 

At the start of the cycle, the inventory level reaches its maximum Q units of item at time  
t = 0. During the time interval [0, td], the inventory depletes due to demand. After td the 
inventory level declines to zero owning to demand and deterioration until the end of the 
current order cycle (see Figure 1). 

Figure 1 Graphical representation of the inventory system 

td T

Q
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The differential equation that represents the inventory status at any instant of time  
t  [0, td], is given by 

1( ) ( , ), 0dI t D A p t td
dt

 (1) 

In the second interval [td, T], the inventory level decreases due to demand and 
deterioration. 

Thus, the following differential equation represents the inventory status. 

2
2

( ) ( ) ( ) ( , ),dI t θ t I t D A p td t T
dt

 (2) 

With boundary conditions I1(0) = Q, I2(T) = 0 and using the assumptions and  
equations (1) and (2), we have 

1( ) ( , ) , 0I t Q D A p t t td  (3) 

2 1( ) ( , ) ( ) ,( )

T

t

I t D A p f t dy td t Tf y  (4) 

where ( ) exp( ( ) ).
T

y

f y θ x dx  

From the continuity of I(t) at t = td and applying the condition I1 (td) = I2 (td) in 
equations (3) and (4), we get 

1( , ) ( , ) ( ) ( )

T

td

Q D A p td D A p f td dyf y  

Which yields that the order quantity per cycle is 

1( , ) ( ) ( )

T

td

Q D A p td f td dyf y  (5) 

Replacing equations (5) in (3), we have 

1 1( ) ( , ) ( ) ( , )( ), 0( )

T

td

I t D A p f td dy D A p td t t tdf y  (6) 

Based on the obtained inventory levels, we can obtain the inventory costs and the sale 
revenue per cycle, which consist of the following elements: 

OC the ordering cost 

OC k  

 

 



   

 

   

   
 

   

   

 

   

   44 A. Patoghi and M. Setak    
 

    
 
 

   

   
 

   

   

 

   

       
 

AC the advertisement cost 

AC G A  

HC the inventory holding cost 

1 2

0

0 0

( ) ( ) ( ) ( )

1 1( , ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

td T

td

td T T td T

td t td

HC h t I t dt h t I t dt

D A p td t h t dt f t h t dydt f td h t dt dyf y f y

 

PC the purchase cost 

PC c Q  

SR the sale revenue 

( , )SR pD A p T  

Therefore, the total profit per unit time [denoted by Π(A, p, T)] is given by 

0

0

1( , , ) { }

( , ) ( )

1( ) ( ) ( )( )
( , )

( ) ( ) 1/ ( )

T T td

td t

td T

td

A p T SR OC HC PC
T
pD A p K AG

f t h t dydt th t dtf y
D A p

T
c h t dt td f td f y dy

 (7) 

Therefore, the crisp model is Π(A, p, T) 

Subject to T td  (8) 

3.2 Fuzzy inventory model 

In this paper, we have defined the length of deterioration free time with a triangular fuzzy 
number. The behaviour of inventory system when deterioration free time is characterised 
as triangular fuzzy number is projected in Figure 2. 
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Figure 2 Graphical representation of the fuzzy inventory system 

1td
Time

Inventory

td 2td T

Q

0  

Therefore, under fuzzy framework our crisp problem described in equation (8) converts 
as follow 

Maximise ( , , )A p T  

Subject to Cr td T  (9) 

Note that  (0, 1) is pre-determined confidence level of fuzzy constraint and 
( , , )A p T  is defined as follow 

0

0

( , , ) ( , ) ( )

1( ) ( ) ( )( )
( , )

( ) ( ) 1/ ( )

T T td

ttd

td T

td

A p T pD A p K AG

f t h t dydt th t dtf y
D A p

T
c h t dt td f td f y dy

 (10) 
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According to Soni and Potel (2013), the described problem in equation (9) converts into a 
multi-objective non-linear programming which is as follows 

Maximise [ΠL(A, p, T), ΠR(A, p, T)] 

2 1Subject to (2 1) or (1 2 )T td τ T td τ  (11) 

where 

0

0

( , , ) ( , ) ( )

1( ) ( ) ( )( )
( , )

( ) ( ) 1/ ( )

l

l

r

l

L

tdT T

td t

td T

r l

td

A p T pD A p K AG

f t h t dydt th t dtf y
D A p

T
c h t dt td f td f y dy

 (12) 

0

0

( , , ) ( , ) ( )

1( ) ( ) ( )( )
( , )

( ) ( ) 1/ ( )

r

r

l

r

R

tdT T

td t

td T

l l

td

A p T pD A p K AG

f t h t dydt th t dtf y
D A p

T
c h t dt td f td f y dy

 (13) 

Also the order quantity per cycle is as follow 

[ , ]

1 1( , ) ( ) , ( , ) ( )( ) ( )
r l

L R

T T

l r r l

td td

Q Q Q

D A p td f td dy D A p td f td dyf y f y
 (14) 

4 Solution procedure 

First, the multi-objective problem defined in equation (11) must be transferred to a single 
objective optimisation problem. Herein, ΠL(A, p, T) and ΠR(A, p, T) can be construed as 
the pessimistic and optimistic returns, respectively. Hence, in order to be able to have 
interaction between pessimistic and optimistic decisions, we hire weighted sum method 
(WSM) to solve the multi-objective problem defined in equation (11). Note that, WSM 
transfers a multi-objective problem into single objective by applying relative weight of  
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objective functions. In other words, WSM enables retailer to have interaction between 
his/her pessimistic and optimistic returns. Thus, the problem defined in equation (11) 
transfers into single objective problem given by 

Maximise Πw(A, p, T) 

Subject to T ≥ td + (2  – 1)τ2 or T ≥ td – (1 – 2 )τ1 

where w1 and w2 are weighting coefficients and 

1 2( , , ) ( , , ) ( , , )w L RA p T w A p T w A p T  (15) 

Due to the high complexity of aforementioned equations, it is not possible to hire Hessian 
matrix to prove concavity of the total profit. Instead, to obtain optimal solution we apply 
a search procedure which has been incorporated in Wu et al (2006), Shah et al (2013) and 
Soni and Patel (2013) as well. Accordingly, first of all for given p and A existence of a 
unique optimal value of T is proved. Afterwards for fixed A and known T unique optimal 
value of p which maximises the total profit is obtained. Then, we prove concavity of 
profit function with respect to A, and since frequency of advertisement is a discrete 
variable, the aforementioned procedure is implemented for all different value of A. 

The first order partial derivative of Πw(A, p, T) with respect to T gives 

12 2
0

1

0

0

( , , ) ( , ) ( ) ( ) ( ) ( )

1( ) ( ) ( ) ( ) ( )

1 1( ) ( ) ( ) ( )( ) ( )

r

l

l

r

l

r r

td T
w

l

td

td T

l l l r

td

td T T T

r

td td t

A p T K AG D A p Tw f td h t dt f t h t dt
T T T

w td T h t dt c td f td T f td dyf y

f td h t dt dy f t h t dydtf y f y

2

0

2

0

0

( ) ( ) ( ) ( )

1( ) ( ) ( ) ( ) ( )

1 1( ) ( ) ( ) ( )( ) ( )

l

r

l

r

l l

td T

r

td

tdr T

r r r l

td

td T T T

l

td td t

Tw f td h t dt f t h t dt

w td T h t dt c td f td T f td dyf y

f td h t dt dy f t h t dydtf y f y

 (16) 

Motivated from equation (16), the auxiliary function g(T), T  [td, ∞] is defined as follow 
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1

0

1

0

0

2

0

( ) ( ) ( ) ( ) ( )

1( ) ( ) ( ) ( ) ( )

1 1( ) ( ) ( ) ( )( ) ( )

( ) ( )

r

l

l

r

l

r r

l

td T

l

td

td T

l l l r

td

td T T T

r

td td t

td

r

g T Tw f td h t dt f t h t dt

w td T h t dt c td f td T f td dyf y

f td h t dt dy f t h t dydtf y f y

Tw f td h t dt

2

0

0

( ) ( )

1( ) ( ) ( ) ( ) ( )

1 1( ) ( ) ( ) ( )( ) ( )

r

l

r

l l

T

td

tdr T

r r r l

td

td T T T

l

td td t

f t h t dt

w td T h t dt c td f td T f td dyf y

f td h t dt dy f t h t dydtf y f y

 (17) 

Taking the first order derivative of g(T), T  [td, ∞] with respect to T  [td, ∞], we obtain 

1

0

2

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0

r

l

r

l

tdT

l

td

tdT

l

td

dg T w h T θ T f t h t dt f td c h t dt
dT

w h T θ T f t h t dt f td c h t dt

  

Therefore, g(T) is a strictly decreasing function of T  [td, ∞]. Furthermore we can obtain 
the result lim ( ) .

T
g T  

For notational convenience, let 

1 1(1 2 )g td τ  (18) 

and 

2 2(2 1)g td τ  (19) 

Part 1. If Δ1 ≥ 0 (or Δ2 ≥ 0), applying intermediate value theorem, there exist a unique 
value T(T1  [td – (1 – 2 )τ1, ∞] or T1  [td + (2  – 1)τ2, ∞]) such that g(T1) = 0. This 

reveals that T1 is the unique solution of ( , , ) 0.A p T
T From equations (16) and (17) 

we know the following 

2

( , , ) ( , ) ( )A p T D A p g T
T T

 (20) 

At point T = T1 
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1

1

1

2

2

1 1 1 1
1 0

2 1 1 1

0

( , , )

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0

r

l

r

l

T T

T td

l

td

T td

l

td

A p T
T

D A p w h T θ T f t h t dt f td c h T dt
T

w h T θ T f t h t dt f td c h T dt

 

Therefore, T1  [td + (2  – 1)τ2, ∞] (T1  [td – (1 – 2 )τ1, ∞]) is the global maximum 
solution of Πw(A, p, T). 

Part 2. If Δ1 < 0 (or Δ2 < 0), since g(T) is a strictly decreasing function of T  [td  
+ (2  – 1)τ2, ∞] (T  [td – (1 – 2 )τ1, ∞]), then g(T), T  [td + (2  – 1)τ2, ∞] (T  [td  
– (1 – 2 )τ1, ∞]). It follows that Πw(A, p, T) is a strictly decreasing function of T  [td  
+ (2  – 1)τ2, ∞] (T  [td – (1 – 2 )τ1, ∞]). As a result Πw(A, p, T) reaches its maximum 
value at td + (2  – 1)τ2 (or td – (1 – 2 )τ1). 

Hence, for fixed A and known p, Pareto optimal solution T* which maximises  
Πw(A, p, T) is as follow 

1 1 2

1 1

2 2

0 or 0
* (1 2 ) 0 and 0.5

(2 1) 0 and 0.5

T if
T td τ if

td τ if
 (21) 

Lemma 1. There exist a unique value p* which maximises the profit function Πw(A, p, T) 
for fixed A and T*  [td (1 –2 )τ1, ∞] (or T*  [td + (2  – 1)τ2, ∞]). 

Proof. The first partial derivative of Πw(A, p, T) with respect to is as follow 

0
1

0

0
2

( , , ) ( , ) ( , )

1( ) ( ) ( )( )
( , )

( ) ( ) 1/ ( )

1( ) ( ) ( )( )

l

l

r

l

w

tdT T

td t

td T

r l

td

T T tdr

tdr t

A p T pD A p D A p
p

f t h t dydt th t dtf y
D A p w

T
c h t dt td f td f y dy

f t h t dydt th t dtf y
w

c h
0

( ) ( ) 1/ ( )
r

tdl T

l l

td

t dt td f td f y dy

 (22) 

where D′(A, p) is the derivative of D(A, p). 
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By solving ( , , ) 0, *w A p T p
p

 results 

0
1

0

0
2

0

1( ) ( ) ( )( )
*

( 1)
( ) ( ) 1/ ( )

1( ) ( ) ( )( )

( ) (

l

l

r

l

tdT T

td t

td T

r l

td

T T tdr

tdr t

tdl

l l

f t h t dydt th t dtf y
bp w

b T
c h t dt td f td f y dy

f t h t dydt th t dtf y
w

c h t dt td f td ) 1/ ( )
r

T

td

f y dy

 (23) 

At point p = p* 

2

2
*

( , , ) (1 ) ( , ) 0w

p p

A p T b D A p
p p

 

Therefore, p* is the global Pareto optimal solution of Πw(A, p, T) for fixed A and T*  [td 
(1 –2 )τ1, ∞] (or T*  [td + (2  – 1)τ2, ∞]). 

Taking the second order partial derivative of Πw(A, p, T) with respect to A, for fixed p and 
T, we have 

2

2 2

( , , ) ( , ) ( 1)( ) 0w A p T D A p η η pT X
A A T

 

where 

0
1

0

0
2

0

1( ) ( ) ( )( )

( ) ( ) 1/ ( )

1( ) ( ) ( )( )

( ) ( ) 1/ ( )

l

l

r

l

r

tdT T

td t

td T

r l

td

T T tdr

tdr t

tdl T

l l

td

f t h t dydt th t dtf y
X w

c h t dt td f td f y dy

f t h t dydt th t dtf y
w

c h t dt td f td f y dy

 

Thus, Πw(A, p, T) is concave function of A. Hence, find a local optimal solution results 
the optimal frequency of advertisement A*. 
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Now, Due to the concavity behaviour of the objective function with respect to all 
decision variables, the following algorithm which is similar to ones proposed in Wu et al. 
(2009), Shah et al. (2013) and Soni and Potel (2013), is developed to find global Pareto 
optimal solution of (A, p, T). In addition, as explained in Wu et al. (2009) convergence of 
the proposed algorithm can easily be demonstrated by applying a similar graphical 
technique employed in Hadley and Whitin (1963). 

Algorithm 1 
Step 1 set A = 1. 
Step 2 set k = 1 and initialise the value of p(k) = c. 
Step 3 if  ≤ 0.5 go to step 4 otherwise go to step 5. 
Step 4 calculate Δ1 from equation (18) and apply any one of the following cases. 
(4.1) if Δ1 ≥ 0, then obtain the value of 1

kT  by solving ( , , ) 0w A p T
T

.Substitute the 

value of 1
kT  into equation (23) in order to find corresponding p(k). Set p(k + 1) = p(k) 

and 1 .k kT T  

(4.2) if Δ1 < 0, set T(k) = td – (1 – 2 )τ1 and calculate the value of p(k) from equation (23). 
Set p(k + 1) = p(k). 

Step 5 calculate Δ2 from equation (19) and apply any one of the following cases. 
(5.1) if Δ2 ≥ 0, then obtain the value of 1

kT  by solving ( , , ) 0.w A p T
T

Substitute the 

value of 1
kT  into equation (23) in order to find corresponding p(k). Set p(k + 1) = p(k) 

and 1 .k kT T . 

(5.2) if Δ2 ≥ 0, set T(k) = td – (1 – 2 )τ1 and calculate the value of p(k) from equation (23). 
Set  
p(k + 1) = p(k). 

Step 6 if |p(k + 1) = p(k)| < Epsilon, then set (p*, T*) = (p(k + 1), T(k)) and go to step 7. (p*, T*) is 
the Pareto optimal solution. Otherwise set k = k + 1 and go to step 2. 

Step 7 calculate Πw(A, p*, T*). This amount is the maximum value of the objective function 
for fixed A. 

Step 8 set A′ = A + 1 and repeat step 2 to 7 to find Πw(A′, p*, T*) and go to step 9. 
Step 9 if Πw(A′, p*, T*) ≥ Πw(A, p*, T*), set A =A′ and go to step 8, otherwise go to step 10. 
Step 10 set (A*, p*, T*) = (A, p*, T*) and (A*, p*, T*) is the Pareto optimal solution. 
Step 11 compute ΠL (A*, p*, T*), ΠR (A*, p*, T*) and respectively from equations (12), (13) 

and (15). Also calculate corresponding QL and QR from equation (14). 

5 Experimental results 

To illustrate solution procedure and validity of proposed model, we apply the proposed 
algorithm to solve the following numerical examples. 
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Example1. Same parameters of the model are taken from Soni and Potel (2013) and Shah 
et al. (2013) and adopted to our model. k = $250 per order, c = $3 per unit, G = $80 per 
advertisement, τ1 = 3/365 year, τ2 = 5/365 year, w1 = w2 and θ = 0.08. Holding cost 
function and demand function are as follows 

0.4,
( )

0.4 0.2( ),
t td

h t
t td t td

 

0.04 25( , ) 400,000D A p A p  

First, we obtain the results of the above example by applying the proposed algorithm. As 
shown in Table 1, the optimal solution is (A*, p*, T*) = (3, 5.23, 0.45) and thus 
corresponding profit function ΠW (A*, p*, T*) is 12,896.85. Figure 3 illustrates concavity 
behaviour of the objective function for fixed A, hence optimal solution is a global 
maximum solution. Moreover, we investigate the case in which deterioration free time 

,td  is not fuzzy. In this case, for crisp value of td, we consider the middle value of 

interval [tdl, tdr], i.e., 26 / 365.2
l rtd tdtd  As Table 1 reveals these optimum 

values does not differ much from optimum values obtained by applying multi-objective 
approach with equal weighting coefficients. This result reveals that the proposed model is 
advantageous whenever the uncertainty exists in deterioration free time. 
Table 1 Computational result for crisp td vs. fuzzy td  

td A* p* T* Q* Π* 
Fuzzy 3 5.23 0.456 3,085.77 12,869.9 
Crisp 3 5.22 0.459 3,113.75 12,927.2 

Figure 3 Profit function for fixed A (see online version for colours) 
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Table 2 Computational results for different value of η and td when θ = 0.08 

θ η td δ A* p* T* *
wQ  *

w  

0.08 0.03 0 0 2 5.23623 0.43859 2,905.36 12,699.2 
   0.2 2 5.23647 0.42101 2,786.58 12,659.2 
   0.4 2 5.23703 0.40644 2,687.89 12,622.1 
   0.6 2 5.23777 0.39405 2,603.68 12,587.5 
   0.8 2 5.23865 0.38328 2,530.38 12,554.8 
   1 2 5.23962 0.37378 2,465.61 12,523.9 
  15/365 0 2 5.21994 0.43792 2,914.41 12,761.6 
   0.2 2 5.21891 0.42262 2,812.25 12,731.8 
   0.4 2 5.21821 0.40977 2,726.26 12,704.1 
   0.6 2 5.21772 0.39872 2,652.18 12,678.3 
   0.8 2 5.2174 0.38904 2,587.23 12,654 
   1 2 5.21719 0.38045 2,529.49 12,631 
  30/365 0 2 5.20607 0.43892 2,932.36 12,818.5 
   0.2 2 5.20431 0.42583 2,845.85 12,796.8 
   0.4 2 5.20287 0.41468 2,772.1 12,776.6 
   0.6 2 5.20165 0.405 2,707.93 12,757.8 
   0.8 2 5.20061 0.39645 2,651.25 12,740.1 
   1 2 5.19971 0.38881 2,600.55 12,723.4 
 0.04 0 0 3 5.25653 0.47577 3,199.15 12,842.6 
   0.2 3 5.25685 0.45527 3,058.35 12,795 
   0.4 3 5.25755 0.43852 2,942.85 12,751.1 
   0.6 3 5.25848 0.4244 2,845.2 12,710.2 
   0.8 3 5.25956 0.41222 2,760.8 12,671.9 
   1 3 5.26074 0.40154 2,686.63 12,635.6 
  15/365 0 3 5.24005 0.4749 3,208.32 12,906.3 
   0.2 3 5.23896 0.45685 3,085.77 12,869.9 
   0.4 3 5.23826 0.4419 2,983.96 12,836.3 
   0.6 3 5.23782 0.42916 2,897.09 12,805.2 
   0.8 3 5.23758 0.4181 2,821.49 12,775.9 
   1 3 5.23747 0.40834 2,754.69 12,748.4 
  30/365 0 3 5.2258 0.47559 3,225.77 12,964.8 
   0.2 3 5.22385 0.45992 3,120.48 12,937.5 
   0.4 3 5.22229 0.44676 3,031.91 12,912.4 
   0.6 3 5.22101 0.43544 2,955.63 12,889.1 
   0.8 3 5.21993 0.42554 2,888.78 12,867.2 
   1 3 5.21901 0.41674 2,829.37 12,846.6 
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Table 3 Computational results for different value of η and td when θ = 0.01 

θ η td δ A* p* T* *
wQ  *

w  

0.1 0.03 0 0 2 5.24762 0.41956 2,773.7 12,612.4 
   0.2 2 5.24784 0.40473 2,673.39 12,575.8 

   0.4 2 5.24831 0.39218 2,588.32 12,541.5 

   0.6 2 5.24896 0.38134 2,514.61 12,509.3 
   0.8 2 5.24972 0.37181 2,449.69 12,478.7 

   1 2 5.25058 0.36332 2,391.76 12,449.7 

  15/365 0 2 5.22724 0.4188 2,784.79 12,690.2 
   0.2 2 5.22626 0.406 2,699.21 12,663.2 

   0.4 2 5.22554 0.39503 2,625.73 12,638 

   0.6 2 5.22501 0.38544 2,561.47 12,614.2 
   0.8 2 5.22462 0.37695 2,504.45 12,591.8 

   1 2 5.22434 0.36934 2,453.27 12,570.5 

  30/365 0 2 5.21005 0.42004 2,806.46 12,760.8 
   0.2 2 5.2084 0.40918 2,734.59 12,741.4 

   0.4 2 5.20701 0.39975 2,672.15 12,723.3 

   0.6 2 5.20581 0.39143 2,617.02 12,706.2 
   0.8 2 5.20477 0.384 2,567.73 12,690.1 

   1 2 5.20384 0.3773 2,523.22 12,674.8 

 0.04 0 0 3 5.26898 0.45514 3,053.75 12,746.8 
   0.2 3 5.26926 0.43784 2,934.76 12,703.2 

   0.4 3 5.26986 0.42339 2,835 12,662.6 

   0.6 3 5.27067 0.411 2,749.31 12,624.6 
   0.8 3 5.27162 0.40019 2,674.33 12,588.6 

   1 3 5.27266 0.39062 2,607.8 12,554.5 

  15/365 0 3 5.24835 0.45415 3,065.01 12,826.1 
   0.2 3 5.24729 0.43903 2,962.21 12,793.1 

   0.4 3 5.24656 0.42623 2,875 12,762.5 

   0.6 3 5.24606 0.41515 2,799.4 12,733.8 
   0.8 3 5.24573 0.40541 2,732.8 12,706.7 

   1 3 5.24553 0.39672 2,673.36 12,681.1 

  30/365 0 3 5.23066 0.45503 3,086.11 12,898.7 
   0.2 3 5.22882 0.442 2,998.48 12,874.4 

   0.4 3 5.2273 0.43083 2,923.25 12,851.7 

   0.6 3 5.22602 0.42108 2,857.46 12,830.5 
   0.8 3 5.22492 0.41243 2,799.08 12,810.5 

   1 3 5.22397 0.40467 2,746.68 12,791.6 
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We now study the effect of changes in key parameters of system and based on this 
sensitive analysis, managerial insights which are analogous to Shah et al. (2013) are 
extended and the computational results are summarised in Tables 2 and 3. 

1 By increasing the value of δ when other parameters are fixed, the length of optimal 
replenishment cycle T*, economic order quantity *

wQ  and the total system profit *
w  

decrease, while optimal frequency of advertisement A* remains unchanged. This 
result indicates that when holding cost increases, retailer prefers to order smaller 
quantity of items and storage this amount of items for a shorter period of time. When 
td = 0 (instantaneous deteriorating items) an increase in δ causes an increase in 
optimal selling price p*, while when td ≠ 0 (non-instantaneous deteriorating items) 
p* decreases with an increase in the value of the δ. This behaviour of system is 
reflected in Figure 4. 

2 By increasing the value of deterioration rate when other parameters remain 
unchanged, optimal length of replenishment cycle T*, economic order quantity *

wQ  
and total system profit *

w  decrease, while optimal frequency of advertisement A* is 
not sensitive to deterioration rate. 

3 When the value of deterioration free time td increases, economic order quantity *
wQ , 

total system profit *
w  increase and optimal selling price p* will decreases, while 

optimal frequency of advertisement A* remains unchanged with this increase. 

4 When the value of shape parameter η increase, optimal frequency of advertisement 
A*, optimal length of replenishment cycle T* and optimal selling price p* will 
increase. 

Figure 4 Variation of price with δ when η = 0.03 (see online version for colours) 

 

Example 2. In this example we investigate the effect of demand function parameters a 
and b. In this regard same set of input data are considered as in Example 1. The 
computational results for a  (200,000, 400,000, 600,000) and b  (2, 2.5, 3) are 
summarised in Table 4. 
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Table 4 Computational results for different value of a and b 

a b A* p* T* *
wQ  *

w  

200,000 2 4 6.37796 0.50872 2,712.87 15,452.5 
 2.5 2 5.34756 0.55461 1,774.49 5,911.9 
 3 1 4.88188 0.66065 1,176.05 2,297.76 
400,000 2 7 6.30685 0.42391 4,704.44 32,367.7 
 2.5 3 5.25515 0.42311 2,851.72 12,719.9 
 3 1 4.75267 0.45998 1,753.52 5,185.44 
600,000 2 9 6.26814 0.37694 6,398.65 49,684.6 
 2.5 4 5.21866 0.36991 3,837.31 19,738.3 
 3 2 4.72245 0.41154 2,459.06 8,223.86 

Based on computational results, we can derive the following managerial insights 

1 By increasing the value of scaling factor a, the optimal frequency of advertisement 
A*, the optimal weighted order quantity *

wQ  and the optimal weighted total profit 
*
w  increase, while the optimal replenishment cycle T* and the optimal selling price 

p* decrease with an increase in scaling factor a. 

2 By increasing the value of price elasticity index b, the optimal frequency of 
advertisement A*, the optimal selling price p* and the optimal weighted total profit 

*
w  decrease. 

Example 3. In this example we discuss the influence of changes in these two fuzzy 
parameters τ1 and τ2 on Pareto optimal solution of Example 1.The computational results 
for different values of τ1 and τ2 are summarised in Table 5. 

Based on these computational results, we can obtain the following managerial 
insights 

1 For fixed value of τ2, by increasing the value of parameter τ1, the optimal weighted 
quantity *

wQ , the optimal length of replenishment cycle T*, the optimal total 
weighted profit *

w  and the individual optimum value of objective function *
L  

decrease whereas the optimal selling price p* and the individual optimum value of 
objective function *

R  increase with an increase in value of parameter τ1. It is 
obvious that by increasing the value of τ1, spread on left from td would be wider. 
Therefore, the length of deterioration free time deceases and as a result reduces 
optimal order quantity and optimal total profit. 

2 For fixed value of τ1, by increasing the value of parameter τ2, the optimal weighted 
quantity *

wQ , the optimal length of replenishment cycle T*, the optimal total 
weighted profit *

w  and the individual optimum value of objective function increase 
whereas the optimal selling price p* and the individual optimum value of objective 
function *

R  decrease with an increase in value of parameter τ1. By an increase in 
fuzzy parameter τ2, it is clear that the average length of deterioration free time 
increases and thereby from view point of retailer, when the length of deterioration 
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free time is longer, he/she should reduce the selling price and order larger quantity 
per cycle to gain more profit per unit time. 

It should be noted that frequency of advertisement is not sensitive to fuzzy parameters τ1 
and τ2. 
Table 5 Computational results for different value of τ1 and τ2 

τ2 τ1 A* p* T* *
wQ  *

L  *
R  *

w  

3/365 1/365 5 5.1871 0.367981 5,182.741 18,749.54 35,492.65 27,121.1 
 3/365 5 5.1877 0.367933 5,181.133 14,560.73 39,671.39 27,116.06 
 5/365 5 5.1883 0.367902 5,179.7 10,374.08 43,847.66 27,110.87 
 7/365 5 5.189 0.367889 5,178.442 6,190.324 48,020.71 27,105.52 
5/365 1/365 5 5.1867 0.368105 5,185.139 14,569.42 39,681.42 27,125.42 
 3/365 5 5.1873 0.368071 5,183.662 10,382.35 43,858.19 27,120.27 
 5/365 5 5.1879 0.368053 5,182.36 6,198.054 48,031.86 27,114.96 
 7/365 5 5.1886 0.368052 5,181.233 2,017.274 52,201.7 27,109.49 
7/365 1/365 5 5.1863 0.368247 5,187.712 10,391 43,868.17 27,129.59 
 3/365 5 5.1869 0.368225 5,186.366 6,206.288 48,042.35 27.124.32 
 5/365 5 5.1875 0.36822 5,185.195 2,024.968 52,212.81 27,118.89 
 7/365 5 5.1882 0.368233 5,184.199 –2,152.22 56,378.83 27,113.3 

6 Concluding remarks 

In this paper we have established joint marketing and inventory policy optimisation for 
non- instantaneous deteriorating items. In order to be consistent with real life, the length 
of deterioration free time is considered imprecise and to tackle this uncertainty, the 
imprecise length of deterioration free time is defined as triangular fuzzy number. To 
achieve a general framework an arbitrary holding cost rate and arbitrary deterioration rate 
are incorporated. The proposed study considers a demand rate function which in addition 
to selling price depends on frequency of advertisement. To the best of our knowledge, 
this study is the first analysis to consider optimal inventory and marketing parameters 
(replenishment cycle, order quantity, selling price and frequency of advertisement) for 
non-instantaneous deteriorating items with imprecise deterioration free time and arbitrary 
functions of holding cost and deterioration rate. To illustrate the optimal solution, some 
useful theoretical results are derived based upon which an iterative solution algorithm is 
developed. Computational results indicate that optimal policy under uncertain 
environment is identical with the optimal policy under the crisp environment. As a result 
the developed model is capable to aid retailers to decide about optimal policy when 
uncertainty exists. The work presented here could have several extensions. One could 
extend the proposed model by considering the effect of preservation technology 
investment. Also consideration of trade credit and time value of money could be another 
extension of the proposed model. It would also be interesting to study accommodate 
planned shortages, stochastic demand, multi items and so forth. Another idea would be to 
consider supplier selection or multi-stage supply chain. 
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