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Abstract: The paper studies an inventory model for non-instantaneous 
deteriorating item where the deterioration of the item is initiated at a random 
time point. It is assumed that no shortages are allowed and demand occurs 
uniformly but at different rates during pre- and post-deterioration periods. The 
optimum order quantity and reorder intervals are determined so as to minimise 
the total expected cost per unit length of an inventory cycle. Numerical 
examples are cited and a sensitivity analysis is carried out to study the effect of 
model parameters on the optimum policy. 
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1 Introduction 

Depletion in stock takes place owing to demand. However, many products, like volatile 
liquids, agricultural items, films, blood, drugs, fashion goods, electrical components etc., 
undergo deterioration through evaporation, spoilage, dryness etc. during their normal 
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storage period and thereby causes depletion in stock. Hence, while developing inventory 
policies for such products, the loss due to deterioration should not be ignored. The 
earliest work along this line is due to Ghare and Schrader (1963) who developed the EOQ 
model for an exponentially decaying inventory. Thereafter, many authors discussed 
inventory models for deteriorating items under different setups, like Covert and Philip 
(1973), Philip (1974), Sarkar and Sarkar (2013), Shah et al. (2013), Sicilia et al. (2014), 
Qin et al. (2014), Maity and Pal (2015a, 2015b), and Pervin et al. (2015), to name a few. 

Generally, it is assumed that deterioration starts as soon as the items arrive in 
inventory. However, in real life, most items retain their quality or original condition for a 
certain span of time before deteriorating. This phenomenon has been termed as  
‘non-instantaneous deterioration’ by Wu et al. (2006), and can be commonly observed in 
products like fruits, vegetables and fashion items. For such items the assumption that the 
deterioration starts from the instant of arrival in stock may cause retailers to make 
inappropriate replenishment policies. Liu and Shi (1999) classified inventory models into 
two categories, viz. decay models and finite lifetime models. Castro and Alfa (2004) 
proposed a lifetime replacement policy in discrete time for a single unit system. Ouyang 
et al. (2006) developed an inventory model for non-instantaneous deteriorating items with 
permissible delay in payments. Chang et al. (2010) developed optimal replenishment 
policies for non-instantaneous deteriorating items with stock-dependent demand. 
Samanta and Pal (2015) studied a periodic review inventory policy for non-instantaneous 
deteriorating items with time dependent deterioration rate. Pal and Chandra (2014) 
investigated inventory policy for non-instantaneous deteriorating items with stock and 
time dependent demand, price discount and partial backlogging. In all these studies it has 
been assumed that the pre-deterioration period is fixed. But, in real life such an 
assumption is not true for most items in inventory. However, no study has come to our 
notice where the pre-deterioration period is treated as a random variable. 

In this paper we consider a periodic review inventory model for non-instantaneous 
deteriorating items where the pre-deterioration period is random, and the demand rate 
during the pre-deterioration period is greater than that in the post-deterioration period. 
The paper is organised as follows. Section 2 gives the assumptions and notations used in 
the model. Section 3 analyses the model and discusses the optimal solution procedure. 
Numerical examples are cited and a sensitivity analysis is carried out in Section 4. 
Finally, in Section 5 some concluding remarks are made. 

2 Assumptions and notations 

The following assumptions are made in the model: 

1 Demand occurs at a uniform rate. The demand rate in pre-deterioration period is 
greater than that in the post-deterioration period. 

2 Shortages are not allowed. 

3 During post-deterioration period, the failure time of an item has an exponential 
distribution. 

4 The time point μ from which an item starts to deteriorate is a random variable 
following Rect. (0, a) distribution, a > 0. 
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5 Replenishment is instantaneous on ordering. 

6 No shortage is allowed. 

The notations used in the study are as follows: 

D1 pre-deterioration demand rate 

D2 post-deterioration demand rate, D1 ≥ D2 

θ constant deterioration rate in post-deterioration period, 0 < θ < 1 

T length of reorder interval 

Μ length of pre-deterioration period 

Q optimal order quantity 

Cs ordering cost per unit ordered 

C1 purchase cost per unit 

C2 deterioration cost per unit deterioration 

P a fraction such that the carrying cost per item per unit time is pC1 

I(t) inventory level at time t. 

3 The model and its analysis 

The inventory policy is to place an order for Q units at the beginning of each reorder 
interval of length T, such that the stock level is zero at the end of the interval. Q and T are 
the decision variables and are so determined that the total expected cost per unit length of 
a reorder interval is minimised. 

Since the pre-deterioration period μ is random, following the Rect. (0, a) distribution, 
the inventory situation in any reorder interval will depend on whether 

1 T ≥ a 

2 T < a. 

Case 1: T ≥ a 

In this case, the demand rate is D1 in the interval (0, μ), and changes to D2 in the interval 
(μ, T). 

The inventory level I(t) at time t in the interval (0, T), therefore, satisfies the 
following differential equations: 

1

2

( ) , 0

( ) ( ) .

dI t D t μ
dt

dI t θI t D μ t T
dt
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The boundary conditions are I(0) = Q and I(T) = 0, which give 

1( ) , 0I t Q D t t μ  (3.1) 

2 ( )( ) 1θ T tDI t e μ t T
θ

 (3.2) 

From (2.1) and (2.2), we have 

2 ( )
1 1θ T tDQ D μ e

θ
 (3.3) 

(2.3) gives a relationship between the order quantity Q and the reorder interval T for 
given μ. Hence for given μ, we can express the total cost over a reorder interval as a 
function of T. 

3.1 Cost function 

The different components of the cost function in a reorder interval (0, T) for given μ are 
as follows: 

1 Ordering cost = Cs 

2 2 ( )
1 1 1 1Purchase cost ( –1)θ T μ

μ
DP C Q C D μ C e
θ

 (3.4) 

3 2 2* ( )
2Deterioration cost ( ) 1 ( )

T
θ T μ

μ
μ

C DD C I t dt e θ Tμ
θ

 (3.5) 

4 1
0

1 2 2 2( )
1

2

Holding cost ( ) ( )

( 1) 1 ( )
2

T

θ T t

Hμ C p I t dt

D μ D DC p μθ e T μ
θ θ

 (3.6) 

Hence, the cost per unit length of a reorder cycle, for given μ, is obtained as 

*
1

2 ( )
1 1 1

2 2 1 2( )
2 2 1

2 2( )
1 1

2

1( , )

1

1 1 ( ) .
2

1 1 ( )

s

θ T μ

θ T μ

θ T t

C T μ C P D H
T

DCs C D μ C e
θ

C D D μe C D T μ C p
T θ

D DC μθ e C p T μ
θ θ

 (3.7) 

And the expected cost per unit length of a reorder cycle is 



   

 

   

   
 

   

   

 

   

    Inventory model for non-instantaneous deteriorating item 7    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 1
0

* ( ) ( )
1 2 3

1

( ) ( , ) ( )

1

( ) , say

a

θT θ T a θ T a

C T C T μ f μ dμ

C AT A e e A e
Ta
N T

T

 (3.8) 

where 
* 2 3 2

1 1 1 1 2 2 2 1 2 12 6 2sC C a C D a C pD a C D a θ D a C C C p θ θ  

1 2 2 1A D a C θ C p θ  

2
2 2 1 2 12A D C C C p θ θ  

3 1 2 2A C pD a  

* ( ) ( )
1 1 2 3

1( ) .θT θ T a θ T aN T C AT A e e A e
a

 

3.2 Solution procedure 

The optimal value of T that minimises C(T) is a solution to 

( ) 0,C T
T

 

which gives 

*
2 2 3( 1) θT θaθT e C A A A e  (3.9) 

(θT – 1) is an increasing function of T varying in the range [–1, ∞). Hence, there exists a 
unique T satisfying (3.9) provided C*/{A2 – (A2 + A3)e–θa} ≥ –1. 

Theorem 3.1: If C*/{A2 – (A2 + A3)e–θa} ≥ –1, C(T) is convex in T. 

Proof: For C1(T) to be convex in T we must have 
2

1
2

( ) 0,C T
T

 which gives 

2 *
( )

2 2 32 2 2

2 ( ) *
2 2 3

*

( ) 2 2( 1) 0,

i.e., ( 1) 1 2 0,

i.e., ( ) 2 0,

θT θ T a

θT θ T a

θT

N T CθT A e A A e
T aT aT
θT A e A A e C

D T e C

 (3.10) 

where D(T) = {(θT – 1)2 + 1}{A2 – (A2 + A3)e–θa}. 

If C*/{A2 – (A2 + A3)e–θa} ≥ –1, ( ) 0C T
T

 has a unique solution, and at this unique 

solution L.H.S. of (3.10) = (θT – 1)2 – 2(θT – 1) + 1 = (θT – 2)2, which is always ≥ 0. 
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Hence, the function C1(T) is convex in T. Using Theorem 3.1, we, therefore propose 
the following algorithm to find optimal T which minimises the total expected cost C(T): 

 if C*/{A2 –(A2 + A3)e–θa} ≥ –1, optimal T is the unique solution to (3.9) provided the 
solution is ≥ a, else it is T = a 

 if C*/{A2 – (A2 + A3) e–θa } < –1, optimal T = a. 

Case 2: T < a 

In this situation, the items in inventory deteriorate during a reorder interval if μ  [0, T), 
and do not deteriorate if μ  [T, a]. 

For, μ  [0, T), proceeding as in Case 1, we obtain the inventory level I(t) at time t in 
the interval [0, T] as 

1

2
( )

( ) , 0

1 ,θ T t

I t Q D t t μ
D e μ t T
θ

 (3.11) 

and the cost C21(T, μ) per unit length of a reorder cycle is given by (3.7). 
For μ  [T, a], the differential equation for I(t), t  [0, T], is given by 

1
( ) , 0 .dI t D t T

dt
 

with boundary conditions I(0) = Q and I(T) = 0, which gives 

1( ) ( ), 0 .I t D T t t T  (3.12) 

Hence, the order quantity is Q = I(0) = D1T. 

3.3 Cost function 

The different components of the cost function over the interval (0, T), for given  
μ  [T, a], are as follows: 

1 Purchase cost = P = C1Q = C1D1T 

2 Holding cost = 2
1 1 1

0
( ) /2.

T
H C p I t dt C pD T  

Hence, for given μ  [T, a], 

22

2
1

1 1 1

1( , ) [ ]

1  .
2

C T μ Cs P H
T

D TCs C D T C p
T

 

The expected cost C2(T) per unit length of a reorder cycle is, therefore, 
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2 21 22
0

** 2 3
1 2 3 4

2

( ) ( , ) ( ) ( , ) ( )

1 1

( ) , say

T a

T

θT

C T C T μ f μ dμ C T μ f μ

C B T B T B T B e
Ta
N T

T

 (3.13) 

where 
**

1 1 1 2 1 2 1, 2 ,sC C a B C D a D C C C p θ θ  

2 1 1 1 1 2 2 1 2 3 1 1{  2 2, 3,B C p D a C D C D C pD θ B C pD  

2
4 2 1 2 12 ,B D C C C p θ θ  

** 2 3
2 1 2 3 4

1( ) – 1 .θTN T C B T B T B T B e
a

 

3.4 Solution procedure 

The optimal value of T that minimises C2(T) satisfies 

2 ( ) 0.C T
T

 

which gives 
** 3 2 ( 1)

3 2 42 {1 },θT θTC B T B T B e  (3.14) 

or, 

( ) ( ),g T h T  

where g(T) = C** + 2B3T3, h(T) = B2T2 + B4{1 + eθT(θT – 1)}. 

Lemma 3.1: There exists a unique T (≥ 0) satisfying (3.14). 

Proof: We note that C** and B3 are always positive. Hence, g(T) is a convex increasing 
function of T with g(0) = C**(> 0). Again, B4 > 0. Then, for B2 > 0, h(T) is an increasing 

function of T with h(0) = 0 and rate of increase ( )dh T
dT

 = (2B2 + θ2B4eθT)T, which 

increases more rapidly with increase in T than ( )dg T
dT

 = 6B3T2. Hence, the two curves  

y = g(T) and y = h(T) cross each other at a single point on (0, ∞). 
If B2 < 0, we can write (3.14) as g*(T) = h*(T), where g*(T) = C** – B2T2 + 2B3T3, 

h*(T) = B4{1 + eθT(θT – 1)}. Then, g*(T) is a convex increasing function of T with  
g*(0) = C**(> 0), and h*(T) is an increasing function of T with h*(0) =0 and rate of 

increase 
*( )dh T
dt

 = θ2B4eθTT, which increases more rapidly with increase in T than 
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* ( )dg T
dT

= –2B2T + 6B3T2. Hence, the two curves y = g*(T) and y = h*(T) cross each other 

once on (0, ∞). 
At T = T2, satisfying (3.14), the expected cost is minimum if 

2

2
** 3 2

2 4 3 42 3
2

1( ) 2 ( 1) 1 0.θT

T T
C T C B B T B e θT

T T
 

A comparison of the minimum expected costs obtained in Cases 1 and 2 determines the 
optimal reorder cycle length to be taken. 

4 Numerical examples and sensitivity analysis 

Example 4.1: Let us consider an item that can maintain its freshness for at most two 
months and then starts to deteriorate with a deterioration rate θ = 0.2. Before deterioration 
starts, the demand rate is 30 items/unit time but it decreases to tem items/unit time when 
the item starts to deteriorate. The ordering cost is Rs 1,500 per item, purchase cost is  
Rs. 16 per item, deterioration cost is Rs. 5 per item and the carrying cost is Rs. 4 per item. 
The problem is to determine the optimal length of an inventory cycle that will minimise 
the expected cost per unit length of the cycle. 

Solution: For the given model parameters, we have C*/{A2 – (A2 + A3)e–θa} ≥ –1. Hence, 
the optimal value of T minimising C1(T), which is obtained from (3.9), is T = T1 = 5.02 
months > a, and C1(T1) = Rs. 796.22. 

From (3.14) we have T = T2 = 9.03 months (> a), and 
2

2

22
( ) 94.66 0.

T T
C T

T
 

Hence, C2(T) is a convex function of T. Since T2 > a, optimum T that minimises C2(T) is 
T = a = 2 months and minimum C2(T) = C2(a) = Rs. 1,155.08. 

Comparing C1 (T1) and C2(a) we have that the optimum reorder interval length is  
5.02 months and the minimum expected cost per unit length of a reorder cycle is  
Rs. 796.22. 

Example 4.2: We consider another example with θ = 0.5, a = 4 months, ordering cost  
Rs. 1,000 per item and all other costs same as that in Example 4.1. 

Solution: We note that C*/{A2 – (A2 + A3)e–θa} ≥ –1. Solving (3.9) we obtain  
T = 3.776 < a. Hence optimal T minimising C1(T) is T1 = a = 4 months, and C1(T1) =  
Rs. 880.28. 

Equation (3.14) gives T = T2 = 3.702 months (< a) with 
2

2

22
( )

T T
C T

T
 = 339.538 > 0 

and C2(T2) = Rs. 732.16. 
Hence, comparing C1(T1) and C2(T2) we have that the optimum length of the reorder 

interval is 3.702 months and the minimum expected cost per unit length of a reorder cycle 
is Rs. 732.16. 

Table 1 gives a sensitivity analysis of the model with change in the model parameters. 
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Table 1 Change in the optimal value of T and the percent change in C(T) with change in the 
model parameters  

Cs T C(T) % change 
in C(T) C1 T C(T) % change 

in C(T) 

1,300 4.814 755.55 –5.10788 8 5.95 563.69 –29.2042 

1,400 4.919 776.09 –2.5282 12 5.39 683.16 –14.1996 

1,500 5.02 796.22 0 16 5.02 796.22 0 

1,600 5.1169 815.95 2.477958 20 4.75 905.31 13.70099 

1,700 5.2105 835.31 4.909447 24 4.54 1011.71 27.06413 

C2    p    

3 5.1185 774.34 –2.74798 0.15 5.4492 733.74 –7.84708 

4 5.0685 785.33 –1.36771 0.2 5.218 765.8 –3.82055 

5 5.02 796.22 0 0.25 5.02 796.22 0 

6 4.9726 807.01 1.355153 0.3 4.839 825.27 3.648489 

7 4.9265 817.72 2.700259 0.35 4.6956 853.16 7.15129 

a    θ    

1 4.7184 789.09 –0.89548 0.1 6.37 706.67 –11.2469 

2 5.02 796.22 0 0.15 5.587 753.71 –5.33898 

3 5.3584 808.98 1.602572 0.2 5.02 796.22 0 

4 5.7325 826.74 3.833111 0.25 4.588 835.19 4.894376 

5 6.11 848.9 6.616262 0.3 4.246 871.32 9.432067 

Table 1 we conclude that 

1 the model is fairly robust to changes in the model parameters 

2 the optimum length of the reorder interval increases with increase in CS and a, while 
it is a decreasing function of θ, p, C1 and C2. 

5 Conclusions 

The paper discusses a periodic review inventory model for non-instantaneous 
deteriorating items when the pre-deterioration period is a random variable. The optimum 
order quantity and the reorder interval have been obtained so as to minimise the expected 
cost per unit length of a reorder cycle. The length of the reorder cycle is observed to be 
an increasing function of the ordering cost and the maximum length of the  
pre-deterioration period, while it decreases with increase in the deterioration rate, the 
purchase cost and the carrying cost. The model is also noted to be fairly robust to change 
in the model parameters. The model can be extended to include shortage and general 
deterioration rate. 
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