High rate failure properties of human aortic tissue under longitudinal extension
by Piyush Gaur; Khyati Verma; Anoop Chawla; Sudipto Mukherjee; Sanjeev Lalwani; Rajesh Malhotra; Christian Mayer; Pronoy Ghosh; Ravi Kiran Chitteti
International Journal of Experimental and Computational Biomechanics (IJECB), Vol. 4, No. 2/3, 2018

Abstract: Understanding the failure properties of human aortic tissue at high strain rate loading is important to understand the mechanism of traumatic rupture of aorta (TRA). This study reports 18 uniaxial tensile tests performed on human aortic tissue in the longitudinal direction. Rectangular specimens were obtained from cadaveric human aortic tissue. Uniaxial tensile tests were performed at target strain rates of 0.001 s−1, 65 s−1, 130 s−1and 190 s−1 to failure. High-speed video was used to measure the gripper to gripper displacement. Failure stress and strain were calculated. The load-deformation relationship of aorta is found to be nonlinear and strain rate dependent with higher failure stress and lower effective failure engineering strains at higher strain rates. Across tests, the failure stress ranged from 0.86 MPa to 1.86 MPa and effective failure strain from 13.52% to 10.80%.

Online publication date: Tue, 12-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Experimental and Computational Biomechanics (IJECB):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com