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1 Introduction and background

Error-correcting codes are used extensively in communications’ applications including
digital video, radio, mobile communication, satellite/space communications and other
systems.

Here the unit-derived method is exploited to design maximum distance separable codes
with efficient decoding algorithms. For a given rate and a given error-correcting capability,
codes with efficient decoding algorithms are designed to these specifications and are shown
algebraically to have the required properties. This is used to give explicit codes with efficient
decoding algorithms to prove Shannon’s theorem.

Section 1.2 gives further details on content and results. Samples demonstrating the
extent of the constructions are given. Some well-known codes in practical use are shown to
be special cases; better-performing ones can be designed from the general techniques.

Background on coding theory may be found in Blahut (2003), McEliece (2002) and
others. Most of the algebraic background may be found in Blahut (2003) and further
background on algebra and coding theory is developed or referenced as required.

Now (n, r, d) denotes a code of length n, dimension r and (minimum) distance d. The
rate of the code is r

n . The code (n, r, d) can correct t = ⌊d−1
2 ⌋ errors and this is the error-

correction capability of the code. The code is called a maximum distance separable (mds)
code if it of the form (n, r, n− r + 1), that is, if it attains the maximum distance allowable
for a given length and dimension.

GF (q) denotes the finite field of q elements where q = ps is a power of a prime p. The
units of GF (q) are the non-zero elements of GF (q) and these units form a cyclic group
generated by a primitive (q − 1)th root of unity in GF (q). For a prime p, GF (p) = Zp, the
integers modulo p.

1.1 Unit-derived codes

In Hurley and Hurley (2009), and also in Hurley and Hurley (2007, 2010a), methods are
developed for constructing unit-derived codes; these methods are fundamental. The unit-
derived schemes may be described briefly as follows. Let Rn×n denote the ring of n× n
matrices with entries from R, a ring with identity, often a field but not restricted to such.
Suppose UV = In×n in Rn×n. Taking any r rows of U as a generator matrix defines an
(n, r) code and a check matrix is obtained by deleting the corresponding columns of V .
Further details may be found in expanded book chapter form in Hurley and Hurley (2010a).

Now R can be any ring with identity and it has been useful to consider cases other than
fields; cases where R is taken as a polynomial ring, a group ring or as a matrix ring has
been useful in constructing different types of codes such as LDPC codes or Convolutional
codes, Hurley and Hurley (2010b), Hurley et al. (2010) and Hurley (2009, 2016a).

From the unit scheme UV = I , the first r rows in particular of U may be taken as the
generator matrix of a code and then the last (n− r) columns of V give a check matrix

for this code. Thus if UV = In and U =

(
A
B

)
for an r × n matrix A and an (n− r)× n

matrix B and V = (C,D) for an n× r matrix C and an n× (n− r) matrix D, this gives

UV =

(
A
B

)
(C,D) = In from which

(
AC AD
BC BD

)
= In.

ThusAD = 0r×(n−r) andDT is a check matrix for the (n, r) code with generator matrix
A. Note also that AC = Ir×r, the identity r × r matrix, and this will be useful later.
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Any linear code is equivalent to a unit-derived code but there may not be any advantage
in using the equivalence.

Using the unit-derived method has many advantages. Unit-derived codes are in general
not ideals; cyclic and some other such codes are ideals in group rings. Many different codes
of various rates and with predetermined properties may be constructed from a single unit
scheme. Properties of the units may be used to derive codes of particular types and/or with
particular properties. From the set-up, more information on the code C is available than just
its generator and check matrix. Here also efficient decoding methods for certain unit-derived
codes are established.

In the unit scheme as above,
(
A
B

)
(C,D) =

(
AC AD
BC BD

)
, A is taken as the generator

of a code. If αA is a codeword then αA ∗ C = α. Hence the originally transmitted vector
α may be obtained by multiplying on the right by C once the errors have been eliminated
by an error-correcting method.

1.2 Layout and summary

General theorems, Theorems 3.1, 3.2, required for the constructions and decoding methods
are stated in Section 3; these are proved later in Section 5.

Section 4 presents examples as an introduction to, and illustration of, the general
techniques resulting from Theorems 3.1 and 3.2. These examples have interest in themselves,
have full distances and implementable practical decoding algorithms. The examples are far
from exhaustive and could be considered as prototypes for many others.

An illustrative example in Section 4.2 demonstrates the decoding method which is later
derived in general in Section 6.

Section 5 introduces the general method and derives background results from which the
properties of the unit-derived codes may be deduced and from which the decoding algorithms
are created. Results on Vandermonde/Fourier matrices are developed; unit-derived codes
from these are particularly commendable with schemes for deriving maximum distance
separable codes with practical decoding algorithms. Section 6 derives the general decoding
algorithms.

Section 7 describes the general method of constructing codes with required rate and
required error-correcting capability; Section 7.1, gives examples of such required yield
constructions. Section 8 uses the methods to derive an explicit proof of Shannon’s theorem
with an efficient decoding algorithm.

Section 7.4 notes ‘optimal’ codes for a particular finite field.
The use of the unit-derived method for defining and analysing particular types of

codes such as LDPC (Low density parity check) codes, Convolutional Codes and others is
discussed in Section 2. Section 2.4 suggests using the codes for cryptographic schemes.

2 Construction of special types1

Low density parity check (LDPC) codes and convolutional codes attract much attention.
Unit schemes are and have been used to generate such codes by relating the prescribed
properties to properties of the units from which they are derived.
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2.1 Low density

A low density parity check (LDPC) code is a linear code where the check matrix has low
density which means that each row and column has only a small number of non-zero entries
compared to the size of the matrix.

An LDPC code may be obtained from a unit scheme UV = In. To do this, we must
be able to choose columns of V to form a (check) matrix which has low density compared
to its size. The columns of V chosen to decide the rows of U to be used in generating the
code. See Hurley and Hurley (2010b) and Hurley et al. (2010) for further details.

One way to ensure that any choice of rows will be an LDPC code is to ensure that V
itself has low density in all its rows and columns. Indeed from such a unit system with V
of low density many (different) LDPC codes can be generated. It is also possible to find in
general such V of low density so that the resulting LDPC codes have no short cycles Hurley
et al. (2010); LDPC codes with no short cycles in the check matrix are known to perform
well.

It may be shown that an LDPC code is equivalent to one derived from a unit scheme.
This method has been used successfully in Hurley et al. (2010) to generate large length

LDPC codes with excellent performances.

2.2 Convolutional codes

The unit-derived method may be used to describe, define and study properties of
Convolutional Codes, see Hurley and Hurley (2010b), Hurley (2009) ; here the unit schemes
are over certain rings other than fields, such as polynomial rings or group rings. The reference
Hurley and Hurley (2010b) in book chapter form is particularly written as an introduction
to these methods.

The constructions in Hurley (2016a) may be considered as unit-derived convolutional
code construction schemes which have parallels to the (linear) block code unit-derived
schemes developed here.

2.3 Using group rings

Using the embedding of a group rings into a group of matrices, Hurley (2016b), allows the
construction of self-dual, dual-containing, quantum codes, Hurley (2007), and other types
from units in group rings. Cyclic codes are ideals in the group ring of the cyclic code.
Unit-derived codes, in general, are not ideals.

2.4 McEliece type encryption

The codes that are or can be constructed from the unit-derived codes developed here can
have a large length, have good error capability and good decoding capability and are thus
suitable candidates for McEliece type encryption McEliece (1978). The problem with low
rate data can be eliminated. Permutation of the rows and different selections may be used.
This should be compared with the cryptographic schemes of Hurley (2014).

3 Main general results

Statements of the results from which the general constructions and decoding methods are
derived are given in this section. The proofs of these follow from work in Sections 5 and 6.
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Recall that an mds, maximum distance separable, code is one of the form (n, r, n− r +
1) in which the maximum possible distance is obtained for a given length and dimension,
see Blahut (2003) for details.

Theorem 3.1: Let V = V (x1, x2, . . . , xn) be a Vandermonde n× n matrix over a field F
with distinct and non-zero xi. Let C be the unit-derived code obtained by choosing in order
r rows of V in arithmetic sequence with difference k. If (xix

−1
j ) is not a kth root of unity

for i ̸= j then C is an (n, r, n− r + 1) mds code over F. In particular the result holds for
consecutive rows as then k = 1 and xi ̸= xj for i ̸= j.

For Fourier matrices the following theorem is obtained:

Theorem 3.2: (i) LetFn be a Fourier n× nmatrix over a fieldF. Let C be the unit-derived
code obtained by choosing in order r rows of V in arithmetic sequence with arithmetic
difference k and gcd(n, k) = 1. Then C is an mds (n, r, n− r + 1). In particular, this is
true when k = 1 that is, when the r rows are chosen in succession.

(ii) Let C be as in part (i). Then there exist efficient encoding and decoding algorithms
for C.

The decoding methods are based on the decoding methods used in Hurley (2017) in
connection compressed sensing by solving underdetermined systems using error-correcting
codes. These decoding methods themselves are based on the error-correcting methods due
to Pellikaan Pellikaan (1992) which is a method of finding error-correcting pairs.

The complexity of encoding and decoding can be max{O(n log n), O(t2)} where t =
⌊n−r

2 ⌋, that is where t is the error-correcting capability of the code. The complexity is
discussed in Section 9.

4 Initial cases

Initial cases are presented as an introduction to, and illustration of, the general techniques.
The examples have interest in themselves and have practical decoding algorithms.

They also serve as prototypes as to how general and longer length mds codes with
efficient decoding algorithms may be constructed using the unit-derived method with
Vandermonde/Fourier matrices. For the proofs that the codes constructed satisfy the mds
and other properties, the reader is referred to Section 5 and for the decoding algorithms, the
reader should consult Section 6.

The reader might appreciate for comparison the mds codes (Section 4.4) of types
(255, 253, 3), (255, 251, 5), ..., (255, 155, 101), ..., or in general of type (255, r, 256− r),
constructed overGF (28) together with decoding algorithms. The methods may be extended
to form mds codes overGF (2s)with decoding algorithms. It is shown that codes of the form
(256, r, 257− r)may be generated over the prime fieldGF (257)with decoding algorithms
and these perform better.

4.1 To err is ...

If a code is required to correct one error it must have distance ≥ 3. If the length is also ≤ 3
then the code is equivalent to a repetition code, one of the form (3, 1, 3).
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For a code of length 4 to be 1-error correcting, and not a repetition code, it must be
a (4, 2, 3) mds code. Look at unit-derived codes from Fourier 4× 4 matrices for such.
No 4× 4 Fourier matrix exists in characteristic 2 as 2|4. Consider characteristic 3. Now
32 − 1 = 8 so there exists an element of order 8 in GF (32) and thus an element of order
4 exists in GF (32). To construct GF (32) use a primitive polynomial of degree 2 over
Z3 = GF (3) such as x2 + x+ 2. Then x has order 8 and x2 = ω has order 4. Now form
the 4× 4 Fourier matrix F4 over GF (32) with ω as the primitive 4th root of 1.

By general theory, the first two rows or any two rows in succession of a Fourier F4

matrix gives a generator matrix of a (4, 2, 3) code. The rate of these codes is 2
4 = 1

2 .
Row 4 followed by row 1 also works but note that row 1 with row 3 will not give an

mds code. Why?
The order of GF (5)\0 is 4. Then it is required to find an element of order 4 in GF (5)

and it is easily checked that 2 has order 4 modulo 5 as 3. Now form the Fourier 4× 4 matrix

over GF (5) using 2 mod 5 as the primitive element: F4 =


1 1 1 1
1 2 4 3
1 4 1 4
1 3 4 2

. If the matrix is

over GF (5), the calculations can all be done with modulo 5 arithmetic.
A length 5 code could also correct 1 error if it is of the form (5, 3, 3). The rate here is

3
5 . What is required is a Vandermonde or Fourier matrix of size 5× 5 over a field. Such can
be constructed in GF (24), GF (34), ... but not in characteristic 5 of course.

For a length 6 code, it is required to construct a Vandermonde or Fourier 6× 6 matrix
and extract codes from the rows using the unit-derived method. A (6, 2, 5) code can correct
2 errors but the rate is small. Consider constructing (6, 4, 3) codes with 1-error correcting
capability and rate 2

3 . GF (7) has elements of order 6 such as 3 or 5 and these can be used to
construct a Fourier 6× 6 matrix over GF (7) = Z7. Taking the first four rows or any four
rows in succession will generate a (6, 4, 3) code over GF (7).

All the small length codes mentioned here and below may be constructed directly using,
for example, a package such as GAP, containing the coding sub-package GUAVA, reference
et al. (20).

4.2 Worked example of the decoding algorithm

In Section 5 decoding algorithms are derived. Here an example of the workings of the
decoding algorithms developed later is given.

Let F = GF (29). A generator of {F\0} has order 28. We are interested in a Fourier
7× 7 matrix over F. An element of order 7 is easily obtained in F and indeed 77 ≡ 1
mod 29.

Consider then the unitary scheme:



1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6

1 ω2 ω4 ω6 ω ω3 ω5

1 ω3 ω6 ω2 ω5 ω ω4

1 ω4 ω ω5 ω2 ω6 ω3

1 ω5 ω3 ω ω6 ω4 ω2

1 ω6 ω5 ω4 ω3 ω2 ω





1 1 1 1 1 1 1
1 ω6 ω5 ω4 ω3 ω2 ω
1 ω5 ω3 ω ω6 ω4 ω2

1 ω4 ω ω5 ω2 ω6 ω3

1 ω3 ω6 ω2 ω5 ω ω4

1 ω2 ω4 ω6 ω ω3 ω5

1 ω ω2 ω3 ω4 ω5 ω6


= 7I,
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where ω is a primitive 7th root of unity. Here we may take ω = 7 mod 29 and powers of 7
are evaluated mod 29. Other values for ω are possible and what is required is an element
of order 7 modulo 29. 2 Let the first matrix above be denoted by P and the second by Q.
Thus PQ = 7 ∗ I which is the unit scheme P{ 1

7Q} = I . Now choose r rows of P to form
a matrix which generates a (7, r) code and a check matrix for this code is obtained from
Q by eliminating the columns corresponding to the chosen rows of P ; in theory the check
matrix is from 1/7 ∗Q but if H is a check matrix then so is 7 ∗H .

From P then (7, 3, 5) and (7, 5, 3) codes may be obtained by taking, in particular, the
first 3 rows or 5 rows of P or indeed by taking the required number of rows consecutively
from P . The general theory which verifies this, including the distances obtained, is given
in Section 5 below.

A (7, 5, 3) code is 1-error correcting. Take the first 5 rows of P as the generator matrix
A and then the last two columns, D, of V is the check matrix. A codeword is αA for a
1× 5 vector α. Suppose αA+ ϵ is received where ϵ is the error and has just one non-zero
entry. Applying D to αA+ ϵ gives ϵD. Now ϵD is a multiple of a row of D as ϵ has only
one non-zero entry, and this uniquely defines the row and its multiple. Thus the error ϵ may
be eliminated. When the error has been eliminated, then αA ∗ C = 7 ∗ α decodes the word
where C denotes the first 5 columns of Q.

This decoding method of identifying the multiple of the row of the check matrix works
whenever just 1-error needs correcting.

A 2-error correcting code (7, 3, 5) is obtained from this unit scheme by taking any three
rows of P as a generator matrix. The code may be corrected as follows; the details of
the algorithm may be found in Hurley (2017) which was derived from the error-correcting
methods of Pellikaan (1992). The algorithm utilises error-correcting pairs which are shown
to exist for these codes.

Suppose the first 3 rows are the generator matrix of a code C. Then the last 4 columns
of Q constitute a check matrix. Let these columns be denoted by {E4

T, E3
T, E2

T, E1
T} in

order. Then CT is generated by these columns, written as rows. The first three rows of P are
{E0, E1, E2} where E0 consists of all 1s.

Now by Hurley and Hurley (2014) and Pellikaan (1992) an error-correcting pair for C
is as follows:

U = ⟨E1, E2, E3⟩, V = ⟨E0, E1⟩ are error correcting pairs for C.
Let αA be the codeword but when transmitted an error is introduced and the word

received is αA+ w. Note w is a 1× 7 vector. Apply the check matrix which has columns
{E4

T, E3
T, E2

T, E1
T} and then < w,Ei >= wEi

T = Eiw
T are known for i = 1, 2, 3, 4

where <,> denotes inner product. Let < w,E1 >= α1, < w,E2 >= α2, < w,E3 >=
α3, < w,E4 >= α4. The algorithm then is:

• Find an element xT in the kernel of
(
α1 α2 α3

α2 α3 α4

)
. Any non-zero element of the kernel

will do.

• Form a = (E1, E2, E3)x
T.

• Find the locations of the zero coefficients of a. Say these are at j1, j2 for
1 ≤ j1, j2 ≤ 7.
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• Solve


E1,j1 E1,j2

E2,j1 E2,j2

E3,j1 E3,j2

E4,j1 E4,j2

(
x1

x2

)
=


α1

α2

α3

α4

. Here Ek,l denotes the lth entry of Ek.

• w is then x1, located at j1, and x2, located at j2, and zeros elsewhere.

Suppose now that ω = 7 ∈ GF (29) is taken as the 7th root of unity of the Fourier matrix
and the αi are found to be: α1 = 18, α2 = 15, α3 = 4, α4 = 12. Then

• An element in ker

(
18 15 4
15 4 12

)
is xT = (23, 5, 1)T

• a = (E1, E2, E3)x
T = (0, 24, 20, 1, 0, 2, 11). This has zeros at positions

j1 = 1, j2 = 5.

• Solve


E1,j1 E1,j2

E2,j1 E2,j2

E3,j1 E3,j2

E4,j1 E4,j2

(
x1

x2

)
=


α1

α2

α3

α4

 is then solve


1 23
1 7
1 16
1 20

(
x1

x2

)
=


18
15
4
12

. This

has solution x1 = 1, x2 = 2.

• Then the error is x1 located at j1 = 1 position and x2 located at position j2 = 5
giving the error vector w = (1, 0, 0, 0, 2, 0, 0).

The calculations, in this case, are all done in Z29 = GF (29).

4.3 Further samples

4.3.1 11× 11 cases

Suppose a Vandermonde or Fourier 11× 11 matrix F11 over a field F has been found. Now
choose rows consecutively3 to construct codes, and error-correcting pairs exist for these
codes. In Section 5 below it is shown that such codes from F11 are mds, maximal distance
separable codes and decoding methods are derived in Section 6.

Thus (11, 3, 9) codes which have 4-error correcting capability, (11, 5, 7) which have
3-error capability, (11, 7, 5) which have 2-error correcting capability, and (11, 9, 3) which
have 1-error capability ability are obtained. The decoding algorithms reduce to finding
t-error correcting pairs.

An example of such a field which has an easily workable 11th of unity is GF (23). The
group of non-zero elements in GF (23) is of order 22 and is cyclic so elements of order 11
exist. In fact, 2 mod 23 or 3 mod 23 have order 11 in GF (23) and either of these may
be used as a primitive 11th root of unity in forming F11. The calculations, in this case, are
the arithmetic modulo 23.

Let F11 denote the Fourier matrix in GF (23) with ω = 2 mod 23 as the primitive
11th root of unity. Take consecutive rows or else select rows in arithmetic sequence of their
order. An efficient decoding algorithm using error correcting pairs exists for these codes is
given generally in Section 6; the algorithm is derived from Hurley (2017).

Notice that 11 divides 210 − 1 so the Fourier matrix of size 11× 11 can also be
constructed over GF (210). However, this field is large and calculations may be more
difficult. But see Section 4.4 below for discussion of characteristic 2 cases which have other
advantages.
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Note that 11 divides 35 − 1 so the field GF (35) could also be used.

4.3.2 13× 13 cases

For 13× 13 Fourier matrices, there are a number of possibilities. To work in modular
arithmetic take F = GF (53) as 13 divides (53− 1) = 52, and then there exists primitive
13th of unity. In fact 1013 ≡ 1 mod 53 so 10 mod 53 may be used as the primitive 13th
root of unity in GF (53) in forming the Fourier 13× 13 matrix.

In GF (33) also there exists a 13th root of unity as 33 − 1 = 26 = 2 ∗ 13. So indeed
the square of the generator of the non-zero elements of GF (33) is a primitive 13th4 root of
unity. Use an irreducible primitive polynomial of degree 3 in Z3 = GF (3) with which the
calculations may be made in GF (33).

4.4 Characteristic 2 cases

Characteristic 2 cases are always interesting and this is indeed the case with these unit-
derived codes from Vandermonde/Fourier matrices.

Codes over GF (2s) may be transmitted as binary signals. The code symbols are within
GF (2s). If each code symbol is represented by an s-tuple over GF (2), then the code can
be transmitted using binary signalling. In decoding, every s received bits are grouped into
a received signal over GF (2s).

• As 22 − 1 = 3 so 3× 3 Fourier matrices over GF (22) can be obtained and mds codes
may be derived from this. These, however, are equivalent to repetition codes (3, 1, 3)
or to codes of the form (3, 2, 2) which do not have error-correcting capabilities.

• 23 − 1 = 7 gives a Fourier 7× 7 matrix over GF (23). Thus codes (7, 3, 5) which are
2-error correcting and codes (7, 5, 3) which are 1-error correcting may be formed
over GF (23).

• 24 − 1 = 15 and so (15, 13, 3), (15, 11, 5), (15, 9, 7), (15, 7, 9) codes can be formed
by this method over GF (24).

• 25 − 1 = 31, which is prime, enables
(31, 29, 3), (31, 27, 5), (31, 25, 7), (31, 23, 9), .... codes to be formed over GF (25).
If rate about 3/4 is required then take (31, 23, 9) which is 4-error correcting.

• 26 − 1 = 63. Codes of form (63, r, 64− r) may be formed with efficient
error-correcting algorithms.

• 27 − 1 = 127. Fourier 127× 127 matrices may be formed over GF (27). Note that
127 is prime, in fact, a Mersenne prime, and Fourier matrices of length a Mersenne
prime are interesting. Here mds codes of the form
(127, 125, 3), (127, 123, 5), ..., (127, 87, 41), ...., may be formed using unit-derived
codes from this Fourier matrix over GF (27). Note for example that (127, 97, 31) has
rate 97

127 > 3
4 and can correct 15 errors.

Use a prime field? From the prime field GF (127) a Fourier 126× 126 matrix may
be formed with elements from GF (127) = Z127 and unit-derived codes may be
constructed from this; the algebra then is mod 127.

• Now 28 − 1 = 255 and this is an interesting case as mds codes over GF (28) are in
practical use. The Reed-Solomon (see for example Blahut (2003)), (255, 239, 17)
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code over GF (28) is used extensively in data-storage systems, hard-disk drives and
optical communications; the Reed-Solomon (255, 223, 33) code over GF (28) is or
was the NASA standard for deep-space and satellite communications.
Form the Fourier 255× 255 matrix using a primitive 255th root of unity in GF (28).
A primitive polynomial of degree 8 over Z2 = GF (2) would be useful here; lists of
these are known and one such is x8 + x4 + x3 + x2 + 1. By taking unit-derived
codes from this Fourier matrix one readily gets
(255, 253, 3), (255, 251, 5), ..., (255, 239, 17), ..., (255, 223, 23), ..., (255, 155, 101), ...
codes. So, for example, the code (255, 155, 101) can correct 50 errors. Practical
error-correcting algorithms for these are given within the general form of Section 5.
A better way perhaps of constructing these types of codes is to consider the prime
257 and then the field GF (257). The order of the units of GF (257) is 256 and then
construct the Fourier 256× 256 matrix over GF (257) using a primitive 256th root of
unity. Now the order of 3 mod 257 is 256 so indeed 3 mod 257 could be used as
this primitive root of unity in forming the Fourier 256× 256 matrix over GF (257).
Other primitive generators could be used such as 5 as the order of 5 mod 257 is also
256. Note here also that the arithmetic is modular arithmetic in Z257 = GF (257).
For example codes of form (256, 222, 35) with efficient decoding algorithm which
can correct 17 errors may be formed over GF (257); indeed codes of the form
(256, r, 257− r) may be formed over GF (257) with efficient decoding algorithms
for 1 ≤ r ≤ n.

• Clearly, also one can go much further and work with GF (2s) for s > 8.

4.5 Using special fields

Suppose we require that the Fourier matrix, from which the unit-derived codes are generated,
be of size p× p for a prime p.

4.5.1 Mersenne and repunit primes

Fields of characteristic 2 were considered in Section 4.4.
Suppose the generator of the non-zero elements of GF (2s) is of order a prime p and

form the Fourier p× p matrix using this generator as the pth root of unity. This gives a
p× p matrix over GF (2s) from which unit-derived mds codes may be generated; these
have nice properties. For example when rows are selected in arithmetic sequence k then
always gcd(n, k) = 1 and the resulting codes have efficient decoding algorithms.

Saying the non-zero elements of GF (2s) have ordered a prime is simply saying that
2s − 1 is a Mersenne prime. The first Mersenne primes are 3, 7, 31, 127, .., but it is unknown
if there are an infinite number of these.

The fields GF (25), GF (27) with 25 − 1 = 31 and 27 − 1 = 127 were given as
examples in Section 4.4.

All these have efficient error-correcting algorithms as explained in Section 6.
One can also consider repunit base p primes. Now q is a repunit base p prime if q is a

prime and ps − 1 = (p− 1)q for some s. Repunit base 2 primes are the Mersenne primes.
Using repunit base p prime q with ps − 1 = (p− 1)q leads to considering q × q Fourier
matrices over GF (ps). Details are omitted.
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4.5.2 Germain primes

It is often useful to have a prime size Fourier matrix in as small a field as possible. If this field
is also a prime field, then this is even better as the calculations are then modular arithmetic
over the prime field. Thus we are lead to consider Germain primes. Now p is a Germain
prime if 2p+ 1 is also a prime.

Consider the field GF (2p+ 1) where p is also a prime. A generator ω of the non-zero
elements of GF (2p+ 1) has order 2p and thus α = ω2 has order p. Now form the Fourier
p× p matrix over GF (2p+ 1) using α as a primitive pth root of unity. Codes are then
formed from the rows of this Fourier matrix and these are mds codes with efficient decoding
algorithms. As the codes are over GF (2p+ 1) the arithmetic is modular arithmetic over
Z2p+1.

The first Germain primes are 2, 3, 5, 11, 23, 29, 41, ....
For example p = 29 gives 2 ∗ p+ 1 = 59 and form a Fourier 29× 29 matrix over

GF (59) using the square of any generator of the non-zero elements of GF (59). The order
of 2 mod 59 is 58 so the order 4 mod 59 is 29; however, the order of 3 mod 59 is also
29 and this is preferable. Thus take ω = 3 mod 59 and form the Fourier 29× 29 matrix
over GF (59) using this ω as the primitive 29th root of 1.

5 General enabling results

In Hurley (2017) conditions are given to ensure that subdeterminants of Vandermonde
matrices are non-zero. Fourier matrices are special types of Vandermonde matrices. Such
conditions can be applied to generate codes from units with maximum possible distance
and further it is shown that practical decoding algorithms for these codes exist.

Of particular relevance in Hurley (2017) is Section 6, noting Proposition 6.1 and its
corollaries.

5.1 Determinants of submatrices

The Vandermonde matrix V = V (x1, x2, . . . , xn) is defined by

V = V (x1, x2, . . . , xn) =


1 1 . . . 1
x1 x2 . . . xn

...
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n

 .

It is assumed that entries of a Vandermonde matrix here are over a field and not necessarily
over the real or complex numbers. It is well-known that the determinant of V is non-zero if
and only if the xi are distinct; in fact detV =

∏
i<j(xi − xj).

Assume, in addition, from now on that all entries of a Vandermonde matrix used here
are non-zero.

The following Proposition and its corollaries are taken from Hurley (2017). The proofs
are included again here for completeness and for their importance.

Proposition 5.1: Let V = V (x1, x2, . . . , xn) be a Vandermonde matrix with rows and
columns numbered {0, 1, . . . , n− 1}. Suppose rows {i1, i2, . . . , is} (in order) and columns
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{j1, j2, . . . , js} are chosen to form an s× s submatrix S of V and that {i1, i2, . . . , is} are
in arithmetic progression with arithmetic difference k. Then

|S| = xi1
k1
xi1
k2

. . . xi1
ks
|V (xk

k1
, xk

k2
, . . . , xk

ks
)|

Proof: Note that il+1 − il = k for l = 1, 2, . . . , s− 1, for k the fixed arithmetic difference.

Now S =


xi1
k1

xi1
k2

. . . xi1
ks

xi2
k1

xi2
k2

. . . xi2
ks

...
...

...
...

xis
k1

xis
k2

. . . xis
ks

 and so |S| =

∣∣∣∣∣∣∣∣∣
xi1
k1

xi1
k2

. . . xi1
ks

xi2
k1

xi2
k2

. . . xi2
ks

...
...

...
...

xis
k1

xis
k2

. . . xis
ks

∣∣∣∣∣∣∣∣∣.
Hence by factoring out xki from column i for i = 1, 2, . . . , s it follows that

|S| = xi1
k1
xi1
k2

. . . xi1
ks

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
xk
k1

xk
k2

. . . xk
ks

x2k
k1

x2k
k2

. . . x2k
ks

...
...

...
...

x
(s−1)k
k1

x
(s−1)k
k2

. . . x
(s−1)k
ks

∣∣∣∣∣∣∣∣∣∣∣
= xi1

k1
xi2
k2

. . . xis
ks
|V (xk

k1
, xk

k2
, . . . , xk

ks
)|

�

A similar result holds when the columns {j1, j2, . . . , js} are in arithmetic progression.

Corollary 5.1: |S| ̸= 0 if and only if |V (xk
k1
, xk

k2
, . . . , xk

ks
)| ̸= 0.

Corollary 5.2: |S| ̸= 0 if and only if xk
ki

̸= xk
kj

for i ̸= j, 1 ≤ i, j ≤ s. This happens if
and only if (xkix

−1
kj

)k ̸= 1 for i ̸= j, 1 ≤ i, j ≤ s.

Corollary 5.3: |S| ̸= 0 if and only if (xkix
−1
kj

) is not a kth root of unity for i ̸= j, 1 ≤
i, j ≤ s.

Corollary 5.4: When k = 1 (that is when consecutive rows are taken) then |S| ̸= 0.

Proof: This follows from Corollary 5.3 as (xkix
−1
kj

) ̸= 1 for i ̸= j. �

Corollary 5.5: Let xi = ωi−1 where ω is a primitive nth root of unity (that is, when V is
the Fourier n× n matrix) and suppose gcd(k, n) = 1. Then |S| ̸= 0.

Proof: If (xk1x
−1
kj

)k = 1 then (ωki−1ω1−kj )k = 1 and so ωk(ki−kj) = 1. As ω is a
primitive nth root of unity this implies that k(ki − kj) ≡ 0 mod n. As gcd(k, n) = 1 this
implies ki − kj ≡ 0 mod n in which case ki = kj as 1 ≤ ki < n, 1 ≤ kj < n. �

Recall that an mds code is one of the form (n, r, n− r + 1) which attains the maximum
distance possible for an (n, r) code. mds codes with efficient decoding algorithm are the
goal.
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An mds (n, r) code C is characterised by either of the following equivalent conditions,
Blahut (2003):

• C is an (n, r, n− r + 1) code.

• C⊥ is an mds (n, n− r, r + 1) code, where C⊥ is the dual code of C.

• Any (n− r) columns of a check matrix for C are linearly independent.

• Any r columns of a generator matrix for C are linearly independent.

As long as we take the rows of the n× n Vandermonde matrix in arithmetic sequence k and
the entries xi are such that (xix

−1
j ) is not a kth root of unity for i ̸= j then mds codes will

be generated by these rows. When k = 1, in which case consecutive rows of the matrix are
taken, then always gcd(n, k) = 1. When the Vandermonde matrix in question is the Fourier
matrix in addition it will be shown that practical decoding algorithms exist for these cases.

5.2 Fourier matrix

The Fourier matrix is a special type of Vandermonde matrix. Let ω be a primitive nth root
of unity in a field F. The Fourier matrix Fn, relative to ω and F, is the n× n matrix

Fn =


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

... . . .
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


Simplifications can be made to the powers by noting ωn = 1. Then

1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

... . . .
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)




1 1 1 . . . 1
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)

1 ωn−2 ω2(n−2) . . . ω(n−1)(n−2)

...
...

... . . .
...

1 ω ω2 . . . ω(n−1)

 = nIn

The inverse of Fn can be obtained from the above by multiplying through by n−1 when it
exists. An nth root of unity can only exist in a field provided the characteristic of the field
does not divide n and in this case, the n−1 exists.

If ω is a primitive nth root of unity then so is ωk where gcd(n, k) = 1 and in these cases
the Fourier matrix may be defined by replacing ω by ωk to obtain another Fourier matrix.
Notice that the second matrix on the left in the above is obtained by replacing ω by ωn−1

and is thus also a Fourier matrix (relative to ωn−1 and gcd(n, n− 1) = 1).
Denote the rows of Fn in order by {E0, E1, . . . , En−1}. It is easily checked that

EiEn−i
T = n and EiEj

T = 0 for j ̸= n− i mod n. Thus


E0

E1

...
En−1

 (E0
T, En−1

T, En−2
T, . . . , E1

T) = nIn
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Call this the Fourier Equation for future reference. We are assuming the Fourier matrix
exists over the field and in particular, any r rows or any r columns are linearly independent.

Suppose then the first r rows of Fn are used to form a generating matrix A for a (n, r)
code Cr. Now using the unit-derived scheme from the Fourier matrix we see that


E0

E1

...
Er−1

 (En−r
T, En−2

T, . . . , E1
T) = 0n−r

which corresponds to AD = 0n−r where DT is a check matrix. Thus a check matrix is
En−r

En−r−1

...
E1

 and hence


E1

E2

...
En−r

 is a check matrix.

Suppose a codeword αA is transmitted but αA+ w with error w is received where w is
an 1× n vector. Then < Ei, w >= αi are known for i = 1, 2, . . . (n− r) since (αA+
w)Ei

T = wEi
T =< w,Ei > for these i.

The star multiplication, ∗ , is explained further in Section 6.1 but is simply multiplying
corresponding entries of vectors: If xi denotes the ith component of a vector x in Fn then
a ∗ b for a, b ∈ Fn is defined to be the vector with components ai ∗ bi in ith position. The
rows of Fn also have the nice property that Ei ∗ Ej = Ei+j where suffices are taken
mod n and this is very useful for describing error-correcting algorithms.

5.3 Consecutive rows

First of all, consider cases where consecutive rows of the Vandermonde matrix are taken to
define a unit-derived code.

The Vandermonde matrix is

V = V (x1, x2, . . . , xn) =


1 1 . . . 1
x1 x2 . . . xn

...
...

...
...

xn−1
1 xn−1

2 . . . xn−1
n


This has inverse U with V U = In. When V is a Fourier matrix the inverse matrix U of

V is easy to find and can be written down directly.
Let A be the matrix of the first r rows of V and D the matrix of the last (n− r) columns

of U . By unit-derived scheme then, AD = 0 and DT is the check matrix of the (n, r) code
C generated by A. Now C⊥ is the dual code of C and is generated by the rows of DT. It is
known that C is an mds code if and only if C⊥ is an mds code.

Proposition 5.2: Any r × r submatrix of A is a Vandermonde matrix V (xi1 , xi2 , . . . , xir )
for ij ∈ {1, 2, . . . , n} with i1 < i2 < . . . < ir.

Proof: This follows from Proposition 5.1 above.
�
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Corollary 5.6: Any r × r submatrix of A has det ̸= 0.

Corollary 5.7: The code C⊥ is an mds code.

Proof: This is true since A is the check matrix of C⊥ and every r × r submatrix of A has
non-zero determinant so that the minimum distance of the (n, n− r) code C⊥ is r + 1. �

Corollary 5.8: The code C is an (n, r, n− r + 1) mds code.

Proof: This is because C⊥ is an mds (n, n− r, r + 1) code. It may also be seen from the
fact that any r columns of A are linearly independent since the determinant of any r × r
submatrix of A is ̸= 0. �

Take any r consecutive rows of a Vandermonde matrix as follows:

A =


xr1
1 xr1

2 . . . xr1
n

xr1+1
1 xr1+1

2 . . . xr1+1
n

...
...

...
...

xr1+r−1
1 xr1+r−1

2 . . . xr1+r−1
n


Write ij for xij . Now any r × r submatrix of A has the form ir11 ir12 . . . ir1r

...
...

...
...

ir1+r−1
1 ir1+r−1

2 . . . ir1+r−1
r

 .

The determinant of this is by Proposition 5.1

ir11 ir12 . . . ir1r

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
i1 i2 . . . ir
...

...
...

...
ir−1
1 ir−1

2 . . . ir−1
r

∣∣∣∣∣∣∣∣∣ = ir11 ir12 . . . ir1r |V (i1, i2, . . . , ir)|.

This is clearly non-zero - we are assuming the xj are distinct and non-zero.
This gives further mds codes from the unit scheme.

Proposition 5.3: Let Cr be a code obtained by taking any r rows in succession of a
Vandermonde n× n matrix as a generator matrix. Then Cr is an mds (n, r, n− r + 1)
code.

5.4 Rows in an arithmetic sequence

Now choose r rows in sequence with the same arithmetic difference p. Consider the case
where the sequence starts at the first row; cases where the sequence begins at another row
are similar. Then the matrix formed is
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A =


1 1 . . . 1
xp
1 xp

2 . . . xp
n

x2p
1 x2p

2 . . . x2p
n

...
...

...
...

x
p(r−1)
1 x

p(r−1)
2 . . . x

p(r−1)
n

 .

Here we begin at the first row and assume p(r − 1) ≤ n. It may be possible to overlap
and take p ∗ j to be p ∗ j mod n, and the added assumption that r < n. In particular,
overlapping is possible when the Vandermonde unit schemes consist of Fourier matrices.

The check matrix is obtained by deleting the corresponding columns of the inverse of
V .

Any r × r submatrix of A has the form


1 1 . . . 1
ip1 ip2 . . . ipr
i2p1 i2p2 . . . i2pr
...

...
...

...
i
p(r−1)
1 i

p(r−1)
2 . . . i

p(r−1)
r


where ikj means xk

ij
. This has determinant

∏
k<j(i

p
k − ipj ). It is easy to decide when this is

non-zero.
This determinant is non-zero if and only for all ik, ij , k ̸= j that ipk − ipj ̸= 0 and this

happens if and only if (iki−1
j )p ̸= 1 which happens if and only if iki−1

j is not a pth root of
unity.

From Corollary 5.5 it is noted that when gcd(n, k) = 1 and the Vandermonde matrix is
a Fourier matrix then the determinant is never 0. This gives the following proposition.

Proposition 5.4: Let F be a Fourier n× n matrix. Suppose a code is obtained from F by
choosing in order r rows which are in arithmetic sequence k with gcd(n, k) = 1 to form
the generator matrix of a code. Then the code is an mds (n, r, n− r + 1) code.

Note also for the Fourier matrix that it is possible to overlap in selection and still obtain an
mds code.

Proposition 5.5: Let V = V (x1, x2, . . . , xn) be a Vandermonde n× n matrix such that
xix

−1
j is not a kth root of unity for any i ̸= j. Suppose a code is obtained by choosing in

order r rows from V which are in arithmetic sequence k to form a code. Then the code is
an mds (n, r, n− r + 1) code.

6 Decoding

The following decoding methods are sourced from Hurley (2017) which is an application
of Pellikaan’s decoding method using error correcting pairs Pellikaan (1992) when such
exist.

Error correcting pairs were introduced by Pellikaan Pellikaan (1992) and Duursma &
Kötter Duursma and Kötte (1994). The method of Pellikaan is found more useful here and
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in Hurley (2017); the decoding algorithm of Pellikaan has a precise translation into a linear
algebra method for the codes constructed here as explained in Section 3 of Hurley (2017).

6.1 Preliminaries

First, some preliminaries are required. Let F be a field and C a (linear) code over F . Write
n(C) for the code length of C, its minimum distance is denoted by d(C) and denote its
dimension by k(C).

Now wi denotes the ith component of w ∈ Fn. For any w ∈ Fn define the support of
w by supp(w) = {i|wi ̸= 0} and the zero set of w by z(w) = {i|wi = 0} . The weight
of w is the number of non-zero coordinates of w and denote it by wt(w). The number of
elements of a set I is denoted by |I|. Thus wt(a) = | supp(w)|.

We say that w has t errors supported at I if w = c+ e with c ∈ C and I = supp(e) and
|I| = t = d(w, C).

The bilinear form <,> is defined by < a, b >=
∑

i aibi. For a subset C of Fn, the dual
C⊥ of C in Fn with respect to the bilinear form <,> is defined by C⊥ = {x| < x, c >=
0, ∀c ∈ C}.

As usual, the sum of two elements ofFn is defined by adding corresponding coordinates.
Of use in these considerations is what is termed the star multiplication a ∗ b of two elements
a, b ∈ Fn defined by multiplying corresponding coordinates, that is (a ∗ b)i = aibi. For
subsets A and B of Fn denote the set {a ∗ b|a ∈ A, b ∈ B} by A ∗B. If A is generated by
X and B is generated by Y then A ∗B is generated by X ∗ Y .

Definition 6.1: Let A,B and C be linear codes in Fn. We call (A,B) a t-error correcting
pair for C if
1) A ∗B ⊆ C⊥

2) k(A) > t
3) d(A) + d(C) > n,
4) d(B⊥) > t.

For more information on this consult Pellikaan (1992).
Consider now a Fourier n× n matrix. It is shown below that error-correcting pairs exist

for codes generated by the rows of this Fourier matrix where the rows are taken in succession
or in arithmetic sequence k with gcd(n, k) = 1.

Let F = Fn be a Fourier n× n matrix with ω as the element of order n.
Denote the rows of F in order by {E0, E1, . . . , En−1}. It is easily checked that

EiEn−i
T = n and EiEj

T = 0 for j ̸= n− i mod n. Thus
E0

E1

...
En−1

 (E0
T, En−1

T, En−2
T, . . . , E1

T) = nIn.

Call this the Fourier Equation for future reference.
Note that if H is a check matrix for a code then also αH is a check matrix for the code

for any α ̸= 0.
We write out the details for the cases where the first r rows are taken as the generator

matrix. The cases where rows are taken in succession or where rows are taken in arithmetic
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sequence k with gcd(n, k) = 1 are similar; in all cases, it requires getting error-correcting
pairs and working from there.

The general Vandermonde case with a restriction on cases where the rows are taken in
an arithmetic sequence, is given in Section 5.1.

Suppose then C is the code obtained by taking the first r rows of F . Thus C =
⟨E0, E1, . . . , Er−1⟩. Then C⊥ is ⟨E1, E2, . . . , En−r⟩ which can also be obtained by
eliminating the first r columns of the second matrix on the left in the Fourier Equation.

Note that Ei ∗ Ej = Ei+j where suffices are taken mod n. Let A =
⟨E1, E2 . . . , Et+1, ⟩, B = ⟨E0, E1, . . . , Et−1⟩ when (n− r) is even and t = n−r

2 , and let
A = ⟨E1, E2, . . . , Et+1⟩, B = ⟨E0, E1, . . . , Et⟩ when (n− r) is odd and t = ⌊n−r

2 ⌋.
Then it may be verified that A,B is a t-error correcting pair for C.
Thus:

• A ∗B ⊆ C⊥

• k(A) > t

• d(A) + d(C) > n

• d(B⊥) > t

This gives the following algorithm for locating and quantifying up to t errors for the code
C. In Hurley (2017) the method of error-correcting pairs of Pellikaan Pellikaan (1992) is
translated into an algorithm for decoding codes defined by rows in succession or in (certain)
arithmetic sequences of a Vandermonde/Fourier matrix. This may be applied directly here.

Let C be the r × n generator matrix of C. Suppose now α is a 1× r codeword, that αC
is sent but that αC + ϵ is received for a 1× n vector ϵ with at most t non-zero entries.

Assume (n− r) is even; the other case is similar. Thus we are assuming n− r = 2t.
Now C⊥ is a check matrix for the code and thus ϵE1, ϵE2, . . . , ϵEn−r are known by applying
the check matrix to αC + ϵ. Let αi = ϵEi for i = 1, 2, . . . , n− r(= 2t).

The algorithm then is:

Algorithm 6.1:

1. Find a non-zero solution of the kernel of the t× (t+ 1) Hankel matrix
α1 α2 α3 . . . , αt+1

α2 α3 α4 . . . αt+2

...
...

...
...

...
αt αt+1 αt+2 . . . α2t

.

Call this solution xT which is a (t+ 1)× 1 vector.

2. Let a = (E1, E2, . . . , Et+1)x
T which is a 1× n vector.

(Any non-zero multiple of a will suffice as we are only interested in the zero entries of
a. Note that a is a 1× n vector.)

3. Let z(a) = {j|aj = 0} which is the set of locations of the zero coordinates of a.
Suppose z(a) = {j1, j2, . . . , jt} and denote this set by J .
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4. Solve sJ(x) = s(w). This reduces to solving the following. Here
Ei = (Ei,1, Ei,2, . . . , Ei,n).


E1,j1 E1,j2 . . . E1,jt

E2,j1 E2,j2 . . . E2,jt
...

...
...

...
E2t,j1 E2t,j2 . . . E2t,jt



x1

x2

...
xt

 =


α1

α2

...
α2t

 (1)

5. Now since in this case Ei,j = ωi∗j the equation 1 may be put in the form


1 1 . . . 1
ωj1 ωj2 . . . ωjt

ω2j1 ω2j2 . . . ω2jt

...
...

...
...

ω(2t−1)j1 ω(2t−1)j2 . . . ω(2t−1)jt



ωj1x1

ωj2x2

...
ωjtxt

 =


α1

α2

...
α2t

 (2)

(This form shows that the equation to be solved is a Vandermonde system containing
roots of unity but not a (full) Fourier matrix.)

6. The value of w is then the solution of equations (1) or equivalently equations (2)
with entries in appropriate places as determined by J .

6.2 In the arithmetic sequence

Suppose A is an n× n Fourier matrix with rows {E0, E1, . . . , En−1}; these rows satisfy
Ei ∗ Ej = Ei+j .

The Ejw are known for j ∈ J = {j1, j2, . . . , ju} where u ≥ 2t. The elements in J are
in arithmetic progression with difference k satisfying gcd(n, k) = 1. Then w is calculated
by the following algorithm. Let αk =< w,Fjk >= Fjkw for jk ∈ J . Define Fi = Eji for
ji ∈ J and F0 = Ej1−k with indices taken mod n. Let Fi = (Fi,1, Fi,2, . . . , Fi,n).

Algorithm 6.2:

i. Find a non-zero element xT of the kernel of E =


α1 α2 . . . αt+1

α2 α3 . . . αt+2

...
...

...
...

αt αt+1 . . . α2t

.

ii. Let a = (F0, F1, . . . , Ft)x
T. (Any non-zero multiple of a will suffice as we are only

interested in the zero entries of a. Note that a is a 1× n vector.)

iii. Let z(a) = {j|aj = 0} which is the set of locations of the zero coordinates of a.
Suppose z(a) = {j1, i2, . . . , jt} and denote this set by J .
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iv. Solve sJ (x) = s(w). This reduces to solving the following:


F1,j1 F1,j2 . . . F1,jt

F2,j1 F2,j2 . . . F2,jt
...

...
...

...
F2t,j1 F2t,j2 . . . F2t,jt



x1

x2

...
xt

 =


α1

α2

...
α2t

 (3)

v. The value of w is then the solution of these equations with entries in appropriate
places as determined by J .

In Algorithm 6.1 it is shown that the equation (1) are equivalent to a Vandermonde system
of equation (2); similarly, here it can be seen that the equation in (3) are equivalent to a
Vandermonde system with roots of unity as entries (but not the full Fourier matrix).

6.3 The general Vandermonde case

Working with a general Vandermonde matrix introduces difficulties as the inverse is not
always nice to work with. However error-correcting algorithms can be formulated in many
cases and we briefly discuss these cases here.5

Consider the Vandermonde matrix

V = V (β1, β2, . . . , βn) =


1 1 . . . 1
β1 β2 . . . βn

...
...

...
...

βn−1
1 βn−1

2 . . . βn−1
n


We assume the βi are distinct and non-zero.

Denote the rows of V in order by {E0, E1, . . . , En−1}. Then Ei ∗ Ej = Ei+j as long
as i+ j ≤ n.

DefineEk to be (βk
1 , β

k
2 , . . . , β

k
n) for any k ∈ Z. The rows ofV are {E0, E1, . . . , En−1}

and these have been extended.

Lemma 6.1: Ei ∗ Ej = Ei+j .

Proof: This is simply because βiβj = βi+j . �

Let C⊥ = ⟨Ej1 , Ej2 , . . . , Eju⟩, where u = 2t. If C⊥ has rows in arithmetic sequence with
arithmetic difference k and the ratios βiβ

−1
i for i ̸= j in V are not kth roots of unity then C

(the dual of C⊥) is an (n, n− 2t, 2t+ 1) code, see Proposition 5.5, and is t-error correcting
with C⊥ as the check matrix. Then also C has an error correcting pair and a decoding
Algorithm may be derived. However, it is not easy to describe C itself for this general
Vandermonde case.

Let αi =< w,Eji >= Ejiw
T for ji ∈ J . Let Fi = Eji for ji ∈ J . Thus αi =<

w,Fi >.
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Algorithm 6.3:

(i) Find a non-zero element vT of the kernel of E =


α1 α2 . . . αt+1

α2 α3 . . . αt+2

...
...

...
...

αt αt+1 . . . α2t

.

(ii) Let a = (F1, F2, . . . , Ft+1)v
T.

(iii) Let z(a) = {j|aj = 0} which is the set of locations of the zero coordinates of a.
Suppose z(a) = {i1, i2, . . . , it} and denote this set by J .

(iv) Solve sJ(x) = s(w). This reduces to solving the following:


βj1
i1

βj1
i2

. . . βj1
it

βj2
i1

βj2
i2

. . . βj2
it

...
...

...
...

βj2t
i1

βj2t
i2

. . . βj2t
it



x1

x2

...
xt

 =


α1

α2

...
α2t

 (4)

Since the entries in the matrix of (4) have arithmetic difference k giving that
js = i1 + (s− 1)k for 1 ≤ s ≤ 2t, the equation (4) is equivalent to


1 1 . . . 1
βk
i1

βk
i2

. . . βk
it

...
...

...
...

β
(2t−1)k
i1

β
(2t−1)k
i2

. . . β
(2t−1)k
it



βj1
i1
x1

βj1
i2
x2

...
βj1
it
xt

 =


α1

α2

...
α2t

 (5)

(v) Then x = (x1, x2, . . . , xt) is obtained from these equations (5) (or from (4)) and w
has entries xi in positions as determined by J and zeros elsewhere.

The matrix in equation (5) is a Vandermonde matrix. It is sufficient to solve the first t
equations and the inverse of such a t× t Vandermonde type matrix may be obtained in
O(t2) operations. In connection with item 6.3, finding a non-zero element of the kernel of
a Hankel t× (t+ 1) matrix can be done in O(t2) or less operations.

7 Code to a rate and error capability

Suppose an mds code of rate R = r
n is required.

It is required to obtain over a finite field a Fourier n× n matrix.
We can take n to be as large as necessary as r

n = rs
sn for any positive integer s.

Let p be a prime not dividing n. Then by Euler’s theorem, pϕ(n) ≡ 1 mod n where ϕ
is the Euler ϕ function. Thus pϕ(n) − 1 = nq for some positive integer q. Consider the field
F = GF (pϕ(n)). Then a primitive generator, β say, of the field has order (pϕ(n) − 1) = nq.
Then βq = ω has order n in F. Construct the Fourier n× n matrix, Fn, over F using ω as
the element of order n. Now by the method of the previous sections, (n, r, n− r + 1) codes
can be constructed with efficient decoding algorithms from Fn.
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For a prime p not dividing n, we know that there exists a positive integer q such that
pq ≡ 1 mod n. So for best results take q to be the smallest such positive integer and do
the calculations in GF (pq).

If n is odd then 2 ̸ |n and so the Fourier matrix can be obtained over GF (2k) for some
k, where 2k ≡ 1 mod n. For example, if n = 103 then the order of 2 mod 103 is 51 and so
the Fourier matrix may be obtained over GF (251). Making the calculations over GF (2s)
has advantages in that codes over such a field may be transmitted as binary digits.

Suppose a rate R = r
n is required and in addition, t errors may need to be corrected.

Then it is required that t = ⌊n−r
2 ⌋. Assume n− r is even; the other case is similar. Then it

is required that t = n−r
2 = n(1−R)

2 .

7.1 Examples

7.1.1 Rate 5
7

Suppose a rate of 5
7 is required and that t = 50 errors should be correctable. This gives that

n(1− 5
7 )

2 = t = 50 which requires n = 350. Thus a code (350, 250, 101) is required. Thus
construct a Fourier 350× 350 matrix over a field. Now 3 is a prime not dividing n = 350
and the order of 3 mod 350 is 60. Thus this required Fourier matrix exists over GF (360).
Also, the order of 11 mod 350 is 15 and the field GF (1115) may also be used. A little
investigation shows that the order of 43 mod 350 is 4 so the field GF (434) could be used.

Let the required rate again be 5
7 and now it is required that t = 49 errors be correctable.

This gives that n(1− 5
7 )

2 = t = 49 which requires n = 343. Require a (343, 245, 99) code.
Since n is odd it is possible to find a field GF (2s) which has a 343rd root of unity. The order
of 2 mod 343 is 147 so the field GF (2147) could be used but would be large. However,
the order of 19 mod 343 is 6 so it is possible to work in GF (196).

Let the required rate again be 5
7 and now it is required that t = 48 errors be correctable.

This gives that n(1− 5
7 )

2 = t = 48 which requires n = 336. Require a (336, 240, 97) code.
Now note that 337 is prime so can work in the prime fieldGF (337)which involves modular
arithmetic. An element of order 336 is required in GF (337) and this is easily found. For
example, the order of 10 mod 337 is 336 and thus ω = 10 mod 337 may be used as the
element of order 336 in forming the Fourier 336× 336 matrix over GF (337). Here the
arithmetic is modular arithmetic, which is nice.

7.1.2 Rate 31
32

Suppose a rate 31
32 is specified and we would like the code to correct at least 50 errors.

Then for (n, r, n− r + 1) we need n− r ≥ 2 ∗ 50 = 100 and so need for R = 31
32 that

n ∗ 1
32 ≥ 100 which is n ≥ 3200. We would also like to work with modular arithmetic.

Now notice that 3201 is not a prime but that 3203 is a prime. Thus let n = 3202 and
construct the code (3202, 3102, 101) over the prime field GF (3203). This code has rate
slightly less (0.0000019..) than 31

32 . To have rate of 31
32 and still work over a prime field take

n = 104 ∗ 32 = 3328 and then n+ 1 = 3329 is prime. Here we work over the prime field
GF (3329) and get the code (3328, 3224, 105) which can correct 52 errors.

The order of 2 mod 3203 is 3220 so 2 mod 3203 may be used in as the element of
order 3202 for the Fourier 3202× 3202 matrix in GF (3203). All the non-zero elements
of GF (3203) are used for this Fourier matrix. From it codes of all forms (3203, r, 3203−
r + 1) may be obtained for 1 ≤ r ≤ 3202.
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7.2 Rate 3
4 ; correct lots

Suppose, for example, a code is required that could correct 50 errors and have a rate of 3
4 .

The code of smallest length satisfying these conditions is one of the form (400, 300, 101),
How could such a code be constructed? One way is to construct a Fourier 400× 400 matrix
and select three quarters of the rows in order so that an mds code is generated. Thus select
300 rows in sequence from the Fourier matrix. What is the smallest field over which such a
400× 400 Fourier can exist? What is the field of a smallest characteristic over which such
a Fourier matrix can exist? Now ϕ(400) = 160 so we need the smallest field GF (ps) such
that ps ≡ 1 mod 400 with gcd(400, p) = 1 and s|160 as necessary requirements. Here it
is found that 74 ≡ 1 mod 400 so we can use the field GF (74). This is the smallest field for
which there exists a 400× 400Fourier matrix. Now 74 = 2401 and thus the field is relatively
small and its characteristic is small. The 400× 400 Fourier matrix over GF (74) can be
used to find the (400, 300, 101) code but it can also be used to find (400, r, 401− r) codes
over GF (74). For example (400, 350, 51) code can correct 25 errors and (400, 200, 201)
code over GF (74) can correct 100 errors.

Consider constructing a code of rate ≥ 3
4 and which can correct 50 errors but now

require the code to be over GF (p) for a prime p. Now the order of the non-zero elements
of GF (p) is p− 1 and we require n = p− 1 ≥ 400. It turns out that p = 401 is a prime
which is the least prime p for which p ≥ 400. Now the order of 2 mod 401 is 200 so using
2 ∈ GF (401) doesn’t work but the order of 3 mod 401 is 400. Hence let ω = 3 mod 401
and form the 400× 400 Fourier matrix F400 over GF (401) with ω as a primitive 400th
root of unity. Now choose the first 300 rows of F400 or any consecutive 300 rows in F400

gives a (400, 300, 101) code as required.
The calculations are done mod 401. Error correcting pairs are also obtainable from

the unit Fourier scheme which are then used for the efficient decoding algorithms.
Which are better, the codes over GF (74) or the codes over GF (401)?

7.3 Remark

Many such constructions are possible. Codes over GF (2s), for s not too large, and codes
over prime fields may be particularly useful.

7.4 ‘Optimal’ codes from a given field

Suppose the field GF (ps) is given and it is required to construct the best possible codes
with coefficients from this field. Let n = ps − 1. Then there exists an element ω of order n
in GF (ps) and every non-zero element is a power of this generator. Form the Fourier n× n
matrix using ω as a primitive nth root of unity. Unit-derived codes are then formed using
rows of F in succession or else in arithmetic sequence k satisfying gcd(n, k) = 1. For any
1 ≤ r ≤ n, mds codes of the form (n, r, n− r + 1) may be constructed from the rows of
this Fourier matrix. The Fourier matrix uses all the non-zero elements of GF (ps).

These are the best performing codes fromGF (ps); the lengths areps − 1 and all possible
rates r

n with r ≤ n are available.

8 Shannon

Here we relate the previous Hamming results to Shannon results.
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For a given rate 1 ≥ R > 0 the previous sections give methods for constructing
(n, r, n− r + 1) codes where r

n = R. The probability of error is the probability that more
than k = ⌊n−r

2 ⌋ errors occur in the binomial distribution with p the probability that an error
occurs at a component. Here µ = np.

Chernoff’s bounds Chernoff (1952) give the following:

P[X ≥ (1 + δ)µ] ≤ (
eδ

(1 + δ)1+δ)
)µ ≤ e

−δ2

2+δ µ = e
−δ2

2+δ np for δ > 0.

P[X ≤ (1− δ)µ] ≤ (
e−δ

(1− δ)1−δ)
)µ < (

e−δ

e−δ+δ2/2
)µ < e−δ2µ/2 for 0 < δ ≤ 1.

Now consider a code (n, r, n− r + 1) which can correct k = ⌊n−r
2 ⌋ errors and has an

efficient decoding algorithm. Assume n− r is even; the other case is similar; thus k = n−r
2 .

Now r = nR where R is the rate.
For the first Chernoof inequality to hold it is required that (1 + δ)np = k + 1 = 1 +

n−r
2 = 1 + n(1−R)

2 . Thus (1 + δ) = 1
np + 1−R

2p and thus δ = 1−R
2p − 1 + 1

np . We require
δ > 0 and so require 1−R

2p − 1 + 1
np > 0. Multiply across by 2p and this requires (1−

R) + 2/n > 2p which is equivalent to R < 1− 2p+ 2/n. For n large enough make R <

1− 2p+ 2/n. Then the probability of error is < e
−δ2

2+δ np.
Now R < 1− 2p+ 2

n means that R can be as close to 1− 2p as necessary and then
the probability of error is less than e−γn for some γ > 0. Note that p < 1

2 implies that
1− 2p > 0 and then R > 0 also for n big enough.

For the second Chernoff inequality to hold requires (1− δ)µ = n−r
2 which is (1−

δ)np = n(1−R)
2 ; this requires (1− δ) 1−R

2p and hence −δ = 1−R
2p − 1. Now δ > 0 requires

1−R
2p − 1 < 0 in which case require R > 1− 2p. For δ ≤ 1 requires −δ ≥ −1 in which

case it is required that 1−R
2p − 1 ≥ −1 from which it is required that 1−r

2p ≥ 0 from which
it is required that 1 ≥ R, which is true. Thus the second Chernoff inequality can be applied
for R > 1− 2p. Thus for R > 1− 2p the probability of no error is less than e−δ2µ/2. Thus
for n big enough the probability of error is ≥ 1

2 .
In order to construct a (n, r, n− r + 1) code over a finite field by the unit-derived

method with Fourier/Vandermonde matrices it is necessary to have a field F = GF (pk)
such that n|(pk − 1). The rate is R = r

n and n can be taken to be as large as necessary as
r
n = rs

sn for any positive integer s.
Let p be a prime not dividing n. Then by Euler’s theorem, pϕ(n) ≡ 1 mod n where

ϕ is the Euler ϕ function. Thus pϕ(n) − 1 = nq for some positive integer q. Consider the
field F = GF (pϕ(n)). Then a primitive generator β of the field has order pϕ(n) − 1. Then
βq = ω has order n in F . Construct the Fourier n× n matrix, Fn, over F using ω as the
element of order n. Now by the method of the previous sections, (n, r, n− r + 1) codes
can be constructed with efficient decoding algorithms from Fn.

For a prime p not dividing n we know that there exists a positive integer q such that
pq ≡ 1 mod n. So for best results take q to be the smallest such positive integer and do
the calculations in GF (pq).

If a ‘rate’ H is required which is not a rational number then take the ‘nearest’ rational
number to H .
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9 Complexity

The decoding calculations require finding a non-zero element in the kernel of a Hankel
t× (t+ 1) matrix. Finding the kernel of an t× (t+ 1) Hankel matrix can be done in O(t2)
operations. Super-fast algorithms of O(t log2 t) have been proposed with which to find the
kernel of a Hankel t× (t+ 1) matrix.

It is then required to solve a system of 2t× t equations where the coefficients on the left
of the matrix are roots of unity; solving the first t× t equations is sufficient. The matrix of
the system of t× t equations reduces to a Vandermonde matrix whose entries are roots of
unity. Now the system can be solved in O(t2) operations. The entries of the Vandermonde
matrix are roots of unity in a finite field which make the calculations easier and stable.

Consider the case where the encoder is the first part (first rows) of a Fourier matrix.

Thus we are in the situation
(
A
B

)
(C,D) = I where

(
A
B

)
is a Fourier matrix and (C,D)

is a multiple ( 1
n for length n) of a Fourier matrix.

The encoding is α 7→ αA where A is part of a Fourier matrix F =

(
A
B

)
. Thus by

adding 0s to the end of α to get ᾱ of length n ensures the encoding can be done by (Fast)
Fourier Transform if necessary.

Similarly the decoding can be done by (Fast) Fourier Transform when the errors have
been eliminated as αAC = α and C is part of a Fourier matrix (C,D). In fact αA(C,D) =
(αAC,αAD) = (α, 0).

Thus the calculations can all be done in at worst the maximum of O(n log n) and O(t2)
for length n and error-correction t. The t2 is a function of the error-correction capability
t. Now in the vast majority of cases, the required distance 2t+ 1 satisfies t ≤

√
(n); in

these cases, all the calculations can be done in at worst O(n log n) calculations. If super fast
calculations of the kernel of a Hankel t× (t+ 1) matrix are employed as proposed then
the calculations can be done in max{O(n logn), O(t log2 t)} operations. This is certainly
of O(n log n) when log2 t ≤ n or log t ≤

√
logn.
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Notes

1This section is independent of the succeeding sections.
2That ω = 7 mod 29 is used here is coincidental to the size of the matrix.
3Other choices are possible.
4Note that 13 is a base 3 repunit.
5(This general Vandermonde case can be done similar to that of Section 7 of Hurley (2017) although
in that paper the field is C.)




