
40 Int. J. Space-Based and Situated Computing, Vol. 8, No. 1, 2018

Copyright © 2018 Inderscience Enterprises Ltd.

Cooperative and priority based on dynamic resource
adaptation method in wireless network

Kazuaki Togawa* and Koji Hashimoto
Graduate School of Software and Information Science,
Iwate Prefectural University,
152-52, Sugo, Takizawa, Iwate,
020-0693, Japan
Email: g231o022@s.iwate-pu.ac.jp
Email: hashi@iwate-pu.ac.jp
*Corresponding author

Abstract: In recent years, network traffic has been increasing and when large events or natural
disasters occur more network resources are requested at end points of network. Also, with the
spread of smart devices can communicate with high-speed such as LTE, anyone are becoming to
be able to communicate with high-speed. In order to efficiently handle traffic that locally and
temporarily increases, it is effective to utilise smart devices owned by users. However, because
there is a limit to the amount of the traffic that a smart device can handle, it is necessary to
cooperate smart devices, nevertheless a system that cooperates smart devices and aggregates
network resources has not been established. In this paper, we proposed a dynamic resource
adaptation method that aggregates the network resources of smart devices and increases the
available bandwidth. In evaluation experiments, a relationship between the amount of smart
devices and network throughput was evaluated.

Keywords: priority control; resource adaptation method; software defined networking; SDN;
wireless network.

Reference to this paper should be made as follows: Togawa, K. and Hashimoto, K. (2018)
‘Cooperative and priority based on dynamic resource adaptation method in wireless network’,
Int. J. Space-Based and Situated Computing, Vol. 8, No. 1, pp.40–49.

Biographical notes: Kazuaki Togawa is a Master’s student in the Graduate School of Software
and Information Science at the Iwate Prefectural University of Japan. He received his Bachelor’s
degree from the Faculty of Software and Information Science at the Iwate Prefectural University
in 2016. His main interests include software defined networking, network management and
mobile networks. He is a student member of the Information Processing Society of Japan (IPSJ).

Koji Hashimoto is a Professor in the Graduate School of Software and Information Science at the
Iwate Prefectural University of Japan. He received his PhD from the Tohoku University of Japan
in 2001. His research interests include wide range of computer networks, especially audio video
communication, live streaming protocol and communication middleware. He has been
developing distributed audio-video streaming system for multi-point video communications with
dynamic configuration functions of on demand remote controllable audio-video mixer. He is a
member of the Information Processing Society of Japan (IPSJ) and the IEEE.

1 Introduction

In recent years, we have become able to obtain information
through the Internet regardless of time and place since smart
devices such as smart phones and tablets become
widespread. Today we use the various internet services such
as social network services, cloud applications, media
streaming services, etc. Additionally, with the advent of
IoT, there has been a gradual growth of devices connected
to the Internet. As a result, the amount of network traffic is
rapidly increasing. Cisco surveyed that global mobile data
traffic reached 7.2 exabytes per month at the end of 2016
and has grown 18 fold over the past five years (Cisco Visual
Networking Index, 2017).

Furthermore, the amount of network traffic locally and
temporarily increases when large events are held or large
natural disasters occur than normal times. In large events,
broadcasting the state of events through media streaming
services has becoming common. In the future it is expected
that media streaming services using high resolution media
such as 4K resolution, as a result, not only the whole
network but also local and temporary traffic will increase
more and more. Moreover, in a large natural disaster, NTT
Docomo is mobile network operator in Japan surveyed that
the packet traffic doubled in the Great East Japan
Earthquake in 2011 compared with normal time (NTT
Docomo, 2011). In Addition, it is reported that the mobile
data traffic around the Japan Self-Defence Forces bases

 Cooperative and priority based on dynamic resource adaptation method in wireless network 41

increased than normal times in the Kumamoto earthquakes
in 2016 (KDDI, 2016).

As described above, packets are delayed or lost when
there is traffic request exceeding the network resources
since almost all Internet services do not guarantee
bandwidth due to the best effort services. In a large natural
disaster, if important packets are delayed or lost, there is a
possibility of life-threatening.

To this day, many researches and developments have
been made to handle with an increase in network traffic.
However, many methods have focused on an increase of
network traffic in the whole network, and have not focused
on a local and temporary increase of network traffic. For
this reason, it is currently mobile network operators dispatch
mobile base station vehicles to handle the local and
temporary increase of the network traffic. However, since it
is not always possible to dispatch the mobile base station
vehicles to handle the increasing network traffic at the time
of large events or natural disasters, it is necessary that a
system to cooperate the available equipment and solve the
above mentioned problems is established.

On the other hand, smart devices supporting LTE and
LTE-Advanced which specifications are standardised by the
Third Generation Partnership Project (3GPP, 2018) are
spread, environments anyone can communicate with
high-speed have been gearing up. Moreover, in 5th
generation wireless systems that are next generation
communication standard, it is expected to further to improve
the communication speed because the 10 Gbps transmission
experiment in the outdoor mobile environment has been
successful.

For these reasons, it is effective to utilise smart devices
which can communicate with high-speed for the local and
temporary increases of the network traffic. Furthermore,
many smart devices have tethering functions, and this
functions make it possible to use the network resources of
smart devices with other devices, however, there is a limit
to the amount of traffic that can be handled by a smart
device. For example, when broadcast of events at multiple
points, it is assumed that the broadcasting at the same time
with high quality is difficult. If it becomes possible to
aggregate network resources of smart devices as necessary,
broadcasts at multiple points will be possible with high
quality.

Furthermore, handling packets according to the priority
of information is necessary in addition to aggregating
network resources of smart devices. If it only increases
network resources, it is possible that bandwidth will be used
for low priority information. By processing according to the
priority, the increased available bandwidth is more
effectively used.

Moreover, it is preferable that management of smart
devices that provide network resources can be centrally
managed by a single equipment. For example, when there
are many necessary network resources, the number of smart
devices providing network resources also increases. If smart
devices manage the network configuration by themselves, it
is necessary to change the network configuration on each

device each time a smart device is added. It is possible to
easily change the network configuration by centrally
managing smart devices with a single equipment.

Figure 1 SDN overview

Additionally, in recent years, a new network technology
called software defined networking (SDN) has been studied.
Figure 1 shows the architecture of SDN. SDN’s features is
separating the control plane and the data plane. The control
plane decides how to handle the packets. The data plane
forwards the packets according to decisions that the control
plane makes. For that reason, the network system using the
SDN can forward the packets scalable and dynamically.
And, it can change the network system compositions, too. In
addition, it is possible to centralised control by a single
equipment. Altogether, the SDN can configure a centralised
programmable network which controls the entire network
dynamically by a software. Therefore, SDN seems to be
able to dynamically aggregate network resources and the
problems can be solved.

In this paper, we propose a dynamic resource adaptation
method that aggregates network resources and increases the
available bandwidth using SDN. We construct a prototype
system using the OpenFlow which is standardised by the
open networking foundation to realise SDN (Open
Networking Foundation, 2018).

The rest of this paper is organised as follows. Section 2
introduces related works. Section 3 explains our proposed
system overview, system configuration and architecture.
Section 4 describes the details of our proposed method.
Section 5 explains a prototype system. Section 6 describes
the experimental evaluation results of the proposed method.
Section 7 presents the summary of this paper and future
work.

2 Related work

There are several studies in the literature focus on routing
and resource management.

Sato et al. (2013) propose a network system called never
die network (NDN). NDN makes it possible to
communicate in any situation by dynamically switching
multiple networks connecting to the internet. However,
NDN cannot aggregate network resources, although it has
multiple Internet access networks such a satellite
communication, 3G and FTTH. Even if there are multiple
Internet access networks, which is not broken down or does

42 K. Togawa and K. Hashimoto

not occur network congestions, it is difficult to aggregate
the network resources.

Huang et al. (2015) propose a network system which
improves the data transfer performance of the GridFTP by
allocating parallel TCP streams to different paths. However,
in this system, paths which transfer the data are determined
in the paths existing before the transfer. It is difficult to
dynamically add network resources and change the number
of paths. Celenlioglu and Mantar (2015) propose a scalable
routing and resource management model for SDN-based
intra-domain networks. However, the system considers only
pre-established paths.

There are studies which avoid network congestions and
failures by switching different access networks, improve the
data transfer performance by aggregating multiple paths.
However, currently, there are no methods to dynamically
adapt network resources and to increase the available
bandwidth. In order to increase the available bandwidth, it is
necessary a new network system that aggregates network
resources of smart devices.

3 System overview

Based on related works, we describe the system overview.
In this paper, we propose the dynamic resource adaptation
method that increases the available bandwidth. Generally, it
is not easy to increase the available bandwidth. Therefore,
we aim to increase the available bandwidth by realising the
system that aggregates network resources of smart devices.
Moreover, we realise a mechanism to determine and
forward the priority of packets. In this system, IP address
and port number are used to determine priority and register
in advance. Our method determines the priority stream
based on registered rules, and forward packets on the
priority basis. Additionally, we realise a dynamically
network resources adaptation to detect that a smart device is
connected to a switch. In addition, in order to handle sudden
requirements of network resource, we realise a system that
the construction is easy by using general purpose
computers. It seems that our proposed system can handle
sudden requirements by aggregating network resources of
smart devices when large natural disasters occur or large
events are held. In summary, we described our proposed
system overview. We realise the network system that
dynamically detects and aggregates network resources of
smart devices, handling the packets according to them of
priority and increases the available bandwidth by using
general purpose equipment.

3.1 System configuration

Figure 2 shows the system configuration. In this figure, the
broken line shows the control message flow, and the solid
line shows the data flow, in addition the thickness of the
lines show the data amount. The proposed system constructs
of three components: network controller, network switch,
and cooperative device. We explain each component as
follows.

1 Network controller

Network controller always connects to network switch
and cooperative device through the internet, and
manages all network switches and cooperative devices.
For example, it determines IP routing rules and selects
cooperative device for packet forwarding. Moreover,
determine priority of streams by registered information.

2 Network switch

Network switch is installed in places where a lot of
network resources are requested like in hospitals,
shelters, event venues, etc. Moreover, it operates as the
Internet gateway and forwards packets by rules which
are determined by network controller.

3 Cooperative device

Cooperative device is smart device that provides owned
network resources to network switch. It connects with
network switch, and operates as a connection node.
Cooperative device receives packets sent by users
through network switch and transfers the forwarded
packets.

Figure 2 System configurations (see online version for colours)
Shelter, Hospital or Venue

Network Controller

DataFlow:

ControlMessageFlow:

User

Network Switch Cooperative Device

User

Network Switch Cooperative Device

Internet

Aggregated Resources

Aggregated Resources

3.2 System architecture

Figure 3 shows system architecture of proposed system.
First, we explain the architecture of network controller.
Network controller consists of cooperative device manager,
routing controller, system message handler and SDN.
Cooperative device manager manages cooperative devices
connected to network switch. Routing controller controls
routing that preferentially transfers packets with higher
priority and cooperates with cooperative device manager to
determine Cooperative device to which packets are
transferred. System message handler controls system
messages for controlling network switches and cooperative
devices. SDN handles the OpenFlow protocol with system
message handler.

 Cooperative and priority based on dynamic resource adaptation method in wireless network 43

Figure 3 System architecture

Cooperative Device

Application

Forwarding
Controller

Connection
Controller

System Message Handler

Network Switch

Forwarding
Controller

Switch Information
Manager

SDN

System Message Handler

Routing
Controller

Network Controller

Cooperative Device
Manager

SDN

System Message Handler

Next, we explain the architecture of network switch.
Network switch consists of switch information manager,
forwarding controller, system message handler and SDN.
Switch information manager manages information of
cooperative devices connected to network switch. The
managed information is sent to cooperative device manager
of network controller. Forwarding controller forwards
packets according to rules determined by routing controller
of network controller.

Finally, we explain the architecture of cooperative
device. Cooperative device consists of application,
forwarding controller, connection controller, and system
message handler. Application manages all modules of
cooperative device. Forwarding controller of cooperative
device transfers packets forwarded from network switch.
Connection controller cooperates with switch information
manager of network switch, and communicates connections
of cooperative device with network switch.

4 Cooperative device selection algorithm

Figure 4 shows the functional flow of the proposed system.
The system performs the following steps:

1 Cooperative device is connected to network switch.

2 Network switch registers cooperative device as a
connection node and performs linkup. Thus, the
connection between network switch and cooperative
device is established.

3 Cooperative device sends self-information to network
controller through network switch. This information is
a MAC address on the side of network switch and the
established port number of network switch.

4 Network controller determines cooperative device as a
connection node to transfer packets. This determination
is executed when a new flow to be described later is
detected.

5 Network controller notifies network switch of the
forwarding rule determined at step 4. Network switch
transfers packets according to the forwarding rules
notified from network controller.

Figure 4 Functional flow of the proposed system
Network Controller

Network Switch Cooperative Device
(1) Connect to Network Switch

(2) Perform linkup and
register Cooperative Device

(3) Send Cooperative Device information
(5) Set forwarding

rules

(4) Determine the device
for packet forwarding

Next, we describe the way how the proposed system selects
a device for packet forwarding. As shown in Figure 2, the
proposed system aggregates network resources of
cooperative devices, and distributes TCP or UDP streams
from users to each cooperative device through network
switch. Therefore, the streams considered by the
cooperative device selection algorithm are transferred to the
WAN side through network switch.

On the other hand, there are a plurality of users who
communicate through network switch in parallel at the same
time. In order to distribute the streams to each cooperative
device, the proposed system distinguishes them using the
source MAC address and the source port number. A pair of
this source MAC address and the source port number is
called flow by the proposed system and the streams are
managed. When a new flow is detected, the cooperative
device selection algorithm is performed to determine
cooperative device used for forwarding traffic.

Figure 5 describes the cooperative device selection
algorithm. On the assumption that, in the cooperative device
selection algorithm, there are multiple edges and
cooperative devices. Furthermore, cooperative devices are
connected to edges are connected to the WAN. Moreover,
as an example, the edge in Figure 5 shows a base station in
the cellular network or an AP in the prototype system to be
mentioned below. With this algorithm streams are
distributed to cooperative devices and the edge to which
cooperative device is connected.

First, check the number of configured edges. At this
time, when there is only one edge, it is selected the edge.
Then, it checks whether the stream requested for connection
is high priority. The priority of streams is determined by a
pair of the destination IP address and the destination port
number.

If the stream is high priority, it selects an edge has the
smallest number of streams from edges other than a general
stream only edge. It is because that, high priority streams
are sent by edges with fewer the number of streams. Also,
the general stream only edge exists because when multiple
high priority streams exist, general streams are aggregated
in one edge. In addition, if general streams are there already
on the selected edge, the rules are modified so as to send
through the edge not having high priority streams. By this
way, general streams that had already sent to the selected
edge are aggregated to the general stream only edge.

44 K. Togawa and K. Hashimoto

Figure 5 Cooperative device selection algorithm

Start

Select the edge has
the smallest number of streams

from edges other than the
general stream only edge

Select the edge has
the smallest number of streams

 from edges that don't have
 priority streams

Select the edge has
the smallest number

of streams

End

Is the number of edges
 one?

Yes

Yes Yes

No No

No

Are there already
high priority streams?

Does the stream
have high priority?

Select the edge

Modify routing rule
of general streams

Are there already
general streams

on the selected edge?

Yes

No

Select the device has
the smallest number

of streams

Add the routing rule

If the stream requested for connection is a general stream, it
is checked whether high priority streams have already been
sent. If high priority streams have already been sent, it
selects an edge has the smallest number of streams from
edges that do not have high priority streams. As a result, the
bandwidth for the priority stream is ensured, and the general
streams are sent out. Moreover, as mentioned above, there is
the general stream only edge, so there are edges without the
high priority streams that can be selected.

On the other hand if high priority streams do not have
already been sent, it selects an edge has the smallest number
of streams. In this way, the edge for sending streams is
selected in four ways.

When an edge is selected, it selects cooperative device
in the devices connected the selected edge. Finally, it adds a
rule to send through the selected edge and the cooperative
device in the algorithm.

5 Prototype system

To verify the effectiveness of the proposed system, we
developed a prototype system by using general purpose
equipment. Figure 6 shows prototype system overview. In
this section, we describe the prototype system. Network
controller and network switch consist of general purpose

 Cooperative and priority based on dynamic resource adaptation method in wireless network 45

equipment and Android devices are used as cooperative
devices. We developed the prototype system based on the
Ryu (2018) for a SDN framework and the Open vSwitch
(OVS) (2018) for a software switch. As it can be noticed for
Figure 5, the network switch and the cooperative devices
are controlled by a single equipment.

Moreover, we developed a RESTful application for
sending cooperative device information to network
controller through network switch by using several libraries:
OkHttp (2018), Retrofit (2018), ReactiveX (2018) and
Sinatra (2018). The Systemu (2018) is used to perform
linkup and register cooperative device as a connection node.

Figure 6 Prototype system overview
Network Controller

Cooperative Devices Network Switch

OS: Ubuntu LTS 14.04
Library:
Open-vSwitch 2.5.90
Sinatra 1.4.8
systemu 2.6.5

OS: Ubuntu LTS 14.04
Library:
Ryu 3.26

OS: Android
Library:
Android Support Library
OkHttp
Retrofit
RxJava
RxAndroid
RxKotlin

Server

APs

We established the links between cooperative device and
network controller using the build-in USB tethering
function of Android. There are three kinds of tethering
function of Android: the WiFi tethering, the Bluetooth
tethering and the USB tethering. Android cannot turn on the
WiFi connection when the WiFi tethering function is on.
Moreover, a battery has a short battery life. The Bluetooth
tethering has a long battery life than the WiFi tethering,
however, low throughput. The USB tethering can be
charged even if it is ON, and high throughput. The USB
tethering seems to be the best in the three types of tethering
functions.

Table 1 Hardware specification

Network controller CPU: Intel Core i7-X940
RAM: 8GB
OS: Ubuntu 14.04 LTS

Network switch CPU: Intel Core i7-6700
RAM: 16GB
OS: Ubuntu 14.04 LTS

Cooperative device Nexus5X
CPU: Qualcomm Snapdragon 808
RAM: 2GB
OS: Android 7.1.1

Access point Buffalo WHR-1166DHP3

Table 1 shows hardware specification of prototype system.
In addition, all NICs of general purpose equipment were
built with 1000 Base-T, and the connection between access
points and smart devices were built with the IEEE802.11ac.

The performance evaluation experiment using this prototype
system will be described in Table 1.

6 Performance evaluation

6.1 Experiment to distinguish priority

We constructed a testbed network by using general purpose
equipment, and evaluated our proposed system. In the
experiments, we installed the iPerf (2018) on the client and
the server to measure the throughput between the client and
the server.

Figure 7 Overview of testbed network configuration for
experiment to distinguish priority

AP

Network Controller
(Ryu: OpenFlow Controller)Server

Internet

Switch

Client

Network Switch
(OVS: OpenFlow Switch)

Ethernet:

WiFi:

USB:

Cooperative Device
(Android)

First, we performed experiment of distinguish priority.
Figure 7 shows the network configuration for the
performance evaluation experiment to distinguish priority.
In this experiment, the stream A assumed to be a general
stream and the stream B assumed to be a priority stream are
sent and throughput was measured. We compared the cases
where the priorities are distinguished and not. Moreover,
QoS function to distinguish packets priority by
Open vSwitch is used in the experiment.

Table 2 Parameter of experiment to distinguish priority

Parameter Value

Bitrate of stream A 1 Mbps
Bitrate of stream B 600 kbps
Bandwidth limit 1 Mbps
Guaranteed bandwidth 500 kbps
Protocol UDP
Number of trails 3
Measurement time 180 s

The experiment scenario is as follows and Table 2 shows
detailed parameters of the experiment. This experiment is
for comparing the throughput in case of sending the priority
traffic in the situation where the general stream runs out of
bandwidth.

1 the stream A is sent

2 15 seconds after the stream A is sent, the stream B is
sent.

46 K. Togawa and K. Hashimoto

Figure 8 and 9 show the effective throughput summarised
which are calculated from the average transferred bytes per
second. Moreover, these graphs also show the average used
bandwidth and the standard deviation of each stream after
the stream B is sent.

Figure 8 Effective throughput without priority control
(see online version for colours)

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Th
ro

ug
hp

ut
[k

bp
s]

Elapsed Time[s]

Stream A Stream B Total

Stream A

Stream B

Total

Ave: 713.6 kbps
SD: 15.40

Ave: 258.9 kbps
SD: 17.48

Ave: 972.5 kbps
SD: 24.85

Figure 9 Effective throughput with priority control
(see online version for colours)

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Th
ro

ug
hp

ut
[k

bp
s]

Elapsed Time [s]

Stream A Stream B Total

Stream A

Stream B

Total

Ave: 599.9 kbps
SD: 7.08

Ave: 372.3 kbps
SD: 4.96

Ave: 972.1 kbps
SD: 7.66

Figure 8 shows that the throughput of the stream A was
higher than the throughput of the stream B after sending the
stream B that assumed be a high priority stream since the
priorities were not distinguished. On the other hand,
Figure 9 shows that the throughput of the stream B was
higher than the throughput of the stream A. This shows that
the proposal system determines the priority of the streams
by a pair of the destination IP address and the destination
port number and can perform transfer controlling.
Moreover, the standard deviations of each stream is lower
than experiment without distinguishing priority of streams.
In particular, although the throughput of the stream A was
decreased, a scatter of throughput was also reduced.

Figure 10 shows the average, standard deviation,
maximum value and minimum value transition of total
throughput by experiment to distinguish priority. We can
see that the standard deviation of total throughput is low
when the priority is distinguished.

From the results, the transfer performance of high
priority stream was improved by distinguishing the
priorities and performing transfer controlling. Also,
although the transfer performance of the general stream
decreased, the standard deviation decreased. In a condition

which the network traffic is locally and temporarily
increased, the transfer controlling according to the priority
seems to be effective.

Figure 10 Average, standard deviation, max and min value
transition of total throughput by experiment to
distinguish priority

900

950

1000

1050

1100

Without priority control With priority control
Th

ro
ug

hp
ut

[k
bp

s]

6.2 Experiment to increase the number of
cooperative devices

Figure 11 shows the network configuration for experiment
to increase the number of cooperative devices. In this
experiment, to verify a relationship between the number of
cooperative devices and the throughput, we examined a
measurement test of the throughput when cooperative
device is increased. In the experiment, we sent out three
streams of A, B and C. In addition, we increased the number
of cooperative devices from one to three. Also, we increased
the number of access points. The experiment scenario is as
follows and Table 3 shows detailed parameters of the
experiment.

1 the stream A is sent

2 15 seconds after the stream A is sent, the stream B is
sent

3 30 seconds after the stream A is sent, the stream C is
sent.

Table 3 Parameter of experiment to increase the number of
cooperative devices

Parameter Value

Number of devices 1~3
Number of streams 3
Bitrate 100 Mbps
Protocol UDP
Number of trials 3
Measurement time 180 s

 Cooperative and priority based on dynamic resource adaptation method in wireless network 47

Figure 11 Overview of the testbed network configuration for experiment to increase the number of cooperative devices

AP

Network Switch
(Ryu: OpenFlow Controller)Server

Internet

Switch

Client

Network Controller
(OVS: OpenFlow Switch)

Cooperative Device
(Android)

Ethernet:

WiFi:

USB:

AP

AP Cooperative Device
(Android)

Cooperative Device
(Android)

Figure 12, 13 and 14 show the used bandwidth summarised
as stacked graphs which are calculated from the average
transferred bytes per second. Moreover, these graphs also
show the average used bandwidth and the standard
deviation of each stream after the stream C is sent.

Figure 12 Effective throughput of each stream with one
cooperative device (see online version for colours)

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Th
ro

ug
hp

ut
[M

bp
s]

Elapsed Time [s]

Straem A Stream B Stream C

Straem A

Stream B

Stream C
Ave: 58.5Mbps
SD: 1.25

Ave: 59.2Mbps
SD: 1.74

Ave: 57.2Mbps
SD: 0.91

Figure 13 Effective throughput of each stream with two
cooperative device (see online version for colours)

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Th
ro

ug
hp

ut
[M

bp
s]

Elapsed Time [s]

Straem A Stream B Stream C

Straem A

Stream B

Stream C
Ave: 89.8Mbps
SD: 0.68

Ave: 100.2Mbps
SD: 0.12

Ave: 85.7Mbps
SD: 0.71

Figure 12 shows that the proposed system cannot handle
network traffic since network resources that cannot handle
by one cooperative device are requested. Figure 13 shows
that the proposed system handles traffic well better than in

the case of one cooperative device since the number of
devices increased to two. However, cooperative device that
is sending two streams cannot handle all traffic. Figure 14
shows that the proposed system can handle all traffic since
the number of devices increased to three. In particular, in
Figure 14, we can see that the performance of each stream
was very stable.

Figure 14 Effective throughput of each stream with three
cooperative device (see online version for colours)

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Th
ro

ug
hp

ut
[M

bp
s]

Elapsed Time [s]

Straem A Stream B Stream C

Ave: 99.8Mbps
SD: 0.19

Ave: 100.0Mbps
SD: 0.14

Ave: 100.0Mbps
SD: 0.14

Stream C

Stream B

Straem A

Table 4 Results of the experiment to increase the number of
cooperative devices

Number of
devices Effective throughput Standard deviation

1 174.9 Mbps 0.75
2 275.7 Mbps 0.44
3 299.9 Mbps 0.35

Table 4 shows the experimental results which are calculated
from the average transferred bytes after the stream C is sent.
The results show that our proposed system successfully
aggregates network resources of cooperative devices, and
improved the data transfer performance. In the case of using
two cooperative devices, the proposed system increases the
used bandwidth by about 58% since the case of one
cooperative device. In addition, in the case of using three
cooperative devices, the proposed system increases the used

48 K. Togawa and K. Hashimoto

bandwidth by about 71% since the case of one cooperative
device. Moreover, in the case of using three cooperative
devices, the used bandwidth is about 300 Mbps, which is all
of the traffic sent out. From this results, our proposed
system aggregates the network resource of several
cooperative devices, it is possible to handle much traffic
that cannot be handled by one cooperative device.
Furthermore, the proposed system lowered the standard
deviation. As a result, the proposed system improves the
data transfer performance as well as it is effective in real
time communication by increasing the available bandwidth.

Figure 15 Average total throughput by experiment to increase
the number of cooperative devices

150

200

250

300

350

1 2 3

Th
ro

ug
hp

ut
[M

bp
s]

Number of devices

Figure 15 shows the average total throughput for each
cooperative device. As mentioned above, as the number of
cooperative devices increased, the average of the throughput
increased. From the results, by increasing the number of
cooperative devices, stable communication with higher
throughput can be provided.

6.3 Experiment for disconnection of cooperative
devices

Furthermore, we performed the experiment for
disconnection of cooperative devices. Figure 16 shows the
network configuration. The purpose of the experiment is to
confirm that the proposed system can handle disconnection
of the device and can perform scalable network resource
management. The experiment scenario is as follows and
Table 5 shows detailed parameters of the experiment.

Figure 16 Overview of the experimental network configuration
for experiment of disconnection of cooperative
devices

Network Controller
(Ryu: OpenFlow Controller)Server

Internet

Switch

Client

Network Switch
(OVS: OpenFlow Switch)

Ethernet:

WiFi:

USB:

AP Cooperative Device
(Android)

AP Cooperative Device
(Android)

1 two cooperative devices are connected to the network
switch

2 two streams are sent via each cooperative device

3 30 seconds after the streams are sent, one of
cooperative devices is disconnected.

Table 5 Experimental parameters for disconnection of
cooperative devices

Parameter Value

Number of streams 2
Bitrate 10 Mbps
Protocol UDP
Number of trails 3
Measurement time 60 s

Figure 17 Effective throughput when cooperative device is
disconnected (see online version for colours)

Figure 17 shows the used bandwidth summarised as a
stacked graph which is calculated from the average
transferred bytes per second. When the one of cooperative
devices is disconnected, the throughput temporarily
decreased. However, since the throughput recovers quickly,
we observed the proposed system can dynamically handle
disconnection of cooperative devices and can forward
packets. Since the prototype system manages cooperative
devices every second, it is assumed that packet forwarding
could be recovered immediately.

7 Conclusions

In this paper, we proposed the dynamic resource adaptation
method that increases the available bandwidth and performs
transfer controlling according to the priority. The proposed
method makes it possible to dynamically aggregate network
resources of smart devices called cooperative device and
handle traffic that the locally and temporarily increases. In
addition, the proposed system determined the priority by a
pair of the destination IP address and the destination port
number, and performed the transfer controlling. This seems
to be able to handle the network traffic that locally and

 Cooperative and priority based on dynamic resource adaptation method in wireless network 49

temporarily increases. Moreover, we developed a prototype
system for evaluation experiment using the general purpose
equipment. In the developed prototype system, the network
switch and the cooperative devices are controlled by a
single equipment. This seems to be able to easily change the
network configuration even if the number of cooperative
devices increased in order to increase the network resources.
In the evaluation experiments using the prototype system,
our proposed system improved the data transfer
performance of the high priority stream by performing the
transfer controlling according to the priority. Although the
data transfer performance of the general stream became
small, the standard deviation was low. Furthermore, our
proposed system increases the available bandwidth as the
number of cooperative devices increase. This makes it
possible to handle much traffic that cannot be handled by
one cooperative device by aggregating the network
resources of several cooperative devices. Moreover, our
proposed system is effective in real time communication
such as streaming services since the proposed system makes
the standard deviation was low. Therefore we consider the
proposed system is effective for live streaming services
such as YouTube Live and Twitch, and VoIP services such
as Skype and Google Hangouts.

However, in the evaluation experiments, the number of
cooperative devices is only three, which is very small scale
experiments. Although we showed that the available
bandwidth can be increased in the evaluation experiments
by increasing the number of cooperative devices to three, it
is necessary to evaluate the traffic volume that can be
handled in the case of more increase. We assume from
Figure 15 that the available bandwidth increase even if the
number of cooperative devices is set to 4 or more, however,
there is a limit because the available bandwidth does not
increase linearly. Moreover, there is a limit to the number of
APs that can deploy without overlapping channels even
though prototype system is configured using 5GHz WiFi. In
the future, we will perform evaluation experiments on a
large scale which increased the number of cooperative
devices. We will also perform experiments in a more
dynamic environment, considering disconnection of
cooperative devices. Furthermore, in this evaluation
experiments, we did not perform an aggregation of network
resources of cooperative devices and transfer controlling
according to the priority at the same time, but only an
individual evaluation experiment was performed. In the
future, we will evaluate the proposed algorithm that
simultaneously with aggregating network resources of
cooperative devices and transfer controlling according to the
priority. Additionally, we are considering adaptation to
cellular networks. It seems to be necessary in real
environments is assumed adaptation to cellular networks. In
that case, it is assumed that the amount of network resources
of each network edge is different. The current algorithm is

based on the number of streams, however network edge
should be selected with a weight on network resources. To
that end, we plan to improve the algorithm to be more
effective aggregating network resources in cellular
networks.

References
3GPP (2018) [online] http://www.3gpp.org/ (accessed 12 January

2018).
Celenlioglu, M.R. and Mantar, H.A. (2015) ‘An SDN based

intra-domain routing and resource management model, in
2015 IEEE International Conference on Cloud Engineering,
pp.347–352.

Cisco Visual Networking Index (2017) Global Mobile Data
Traffic Forecast Update, 2016–2021 White Paper [online]
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/mobilewhite-paper-
c11-520862.html (accessed 12 January 2018).

Huang, C., Nakasan, C. and Ichikawa, K. (2015) ‘A multipath
controller for accelerating GridFTP transfer over SDN’, IEEE
11th International Conference on e-Science, pp.439–447.

iPerf (2018) The TCP, UDP and SCTP network bandwidth
measurement tool [online] https://iperf.fr/ (accessed
12 January 2018).

KDDI (2016) [online] http://www.kiai.gr.jp/jigyou/h28/PDF/
1220p7.pdf (accessed 12 January 2018).

NTT Docomo (2011) [online] http://www.soumu.go.jp/main_
content/000117676.pdf (accessed 12 January 2018).

OkHttp (2018) [online] http://square.github.io/okhttp/ (accessed
12 January 2018).

Open Networking Foundation (2018) Open Networking
Foundation is an operator led consortium leveraging SDN,
NFV and cloud technologies to transform operator networks
and business models [online] https://www.opennetworking.
org/ (accessed 12 January 2018).

Open vSwitch (2018) [online] http://openvswitch.org/ (accessed
12 January 2018).

ReactiveX (2018) [online] http://reactivex.io/ (accessed 12 January
2018).

Retrofit (2018) http://square.github.io/retrofit/ (accessed
12 January 2018).

Ryu (2018) SDN Framework [online] https://osrg.github.io/ryu/
(accessed 12 January 2018).

Sato, G., Hashimoto, K., Uchida, N. and Shibata, Y. (2013)
‘Network link selection method for disaster oriented mobile
network based on OpenFlow framework’, Proc. of Innovative
Mobile and Internet Services in Ubiquitous Computing
(IMIS), 2013 Seventh International Conference, pp.326–330.

Sinatra (2018) [online] http://www.sinatrarb.com/ (accessed
12 January 2018).

Systemu (2018) RubyGems.org your Community Gem Host
[online] https://rubygems.org/gems/systemu/ (accessed 12
January 2018).

