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Abstract: This study examines the application of pattern recognition 
technologies to improve the time and effort required for completing successful 
history matching projects. The pattern recognition capabilities of artificial 
intelligence and data mining techniques are used to develop a surrogate 
reservoir model (SRM), which is then employed to perform the assisted history 
matching process. A well-known reservoir model, PUNQ-S3, was selected to 
study the potentials of the SRM in an assisted history matching process. The 
SRM is a prototype of a full-field reservoir simulation model that demands a 
low development cost and has a high implementation pace. SRMs are built 
based on a spatio-temporal database, which includes different types of  
data extracted from a few realisations of the simulation model. The SRM  
was coupled with the differential evolution optimisation method to  
construct an automated history matching workflow. The results of this  
study prove the SRMs’ capability in assisting history matching processes. 
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1 Introduction 

The purpose of reservoir management is to develop strategies that maximise hydrocarbon 
recovery. Reservoir simulation is usually the standard decision-making tool used by 
industry in reservoir management workflow. A critical concern of reservoir simulation 
and modelling is accuracy. It is generally believed that models with higher resolutions in 
time and space are more accurate in terms of reservoir behaviour prediction. The new 
improvements in reservoir data acquisition have increased the complexity of the reservoir 
model, and therefore, the time required to run it. However, a compelling paradox arises: 
on the one hand, the model must satisfy the accuracy requirements of high resolution; on 
the other hand, the model needs to be fast enough for computationally-intensive tasks 
such as history matching and uncertainty quantification. 

History matching is an important step of any reservoir management workflow. The 
main objective of history matching is to improve and validate the reservoir simulation 
model by incorporating the observed data into the characterisation process. The calibrated 
models are then run to obtain reliable production forecasts. A simulation model tuned to 
match the past performance of a reservoir generally offers a higher degree of confidence 
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to predict future reservoir behaviour. Having a trustworthy prediction of field 
performance directly affects on the technical and financial performance of operators. 

Because of its inverse problem-solving process, history matching is tedious. 
Traditional history matching where reservoir parameters are adjusted manually in a  
trial-and-error fashion makes the operation more time-consuming and cumbersome. 
Assisted (automated) history matching was proposed to decrease the amount of labour 
required during the manual history matching. During the last two decades, efforts have 
been made to improve assisted history matching in a way that could be applicable in the 
real world (Chen and Oliver, 2010). Given the increasing rate of complexity and the  
high-resolution demands of reservoir models, the practicality and potential of these 
methods to handle highly complicated real reservoir models remain questionable. This 
continues to make assisted history matching a demanding research topic. 

The 1960s set the stage for the earliest studies in the field of history matching 
(Kruger, 1961; Wahl et al., 1962; Jacquard, 1964; Jacquard and Jain, 1965; Jahns, 1966; 
Coats et al., 1970; Slater and Durrer, 1971). By and large, these studies sought to propose 
mathematical reservoir models calibrated with the aid of actual data. An important 
introduction in the 1990s was the use of experimental design to develop response 
surfaces that would replace reservoir simulation in the history matching workflow (Eide 
et al., 1994). Researchers aimed to move history matching from a labour-intensive  
user-based framework to a fully or semi-fully automated approach (Tyler et al., 1993; 
Palatnic et al., 1993). In order to address the shortcomings of the gradient-based 
optimisation methods, global optimisation approaches such as simulated annealing, 
evolutionary algorithms, and evolution strategy were proposed. Among such successful 
methods number: the ensemble Kalman filter (Van Leeuwen, 1999; Evensen, 2003; 
Haugen et al., 2006; Aanonsen et al., 2009; Hanea et al., 2010; Szklarz et al., 2011), the 
neighbourhood algorithm (Christie et al., 2002; Stephen et al., 2006; Rotondi et al., 2006; 
Subbey and Christie, 2003), the genetic algorithms (Castellini, 2005; Erbas and Christie, 
2007), the scatter search (Sousa, 2007), the Tabu search (Yang et al., 2007), the 
Hamiltonian Monte Carlo (HMC) (Mohamed et al., 2009), the particle swarm 
optimisation (PSO) (Eberhart and Shi, 2001; Mohamed et al., 2009; Kathrada, 2009, 
2010; Rwechungura et al., 2011), the ant colony optimisation (ACO) algorithm (Razavi 
and Jalai-Farahani, 2008; Hajizadeh et al., 2009a, 2010), the Markov chain Monte Carlo 
(Maucec, 2007), and the chaotic optimisation (Mantica, 2002). 

The increased complexity and simulation time of reservoir models have created a 
bottleneck for history matching workflows. This is particularly true for history matching 
workflows that employ a form of population-based sampling algorithms. Depending on 
the number of uncertainty parameters, these algorithms require a few hundred to a few 
thousand simulation calls to converge to optimal regions and find history-matched 
solutions (Hajizadeh, 2010). Such constraints have generated well-known barriers in the 
application of stochastic population-based methods for real-life history matching and 
uncertainty quantification problems. At the same time, the limitation has incited an active 
area of research to reduce the simulation time of reservoir models. From the current focus 
of research activities, two distinct areas stand out: 

1 mathematical models that improve the physics-based simulation 

2 reduced order/data-driven approaches as proxies that approximate the full field 
simulation. 
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Proxy models represent an inexpensive approximation of full field simulation models, 
which usually entail a high computational cost. Proxy models, therefore, are frequently 
used in different areas of engineering (Thomas and Vernon, 1997; Storn, 1996, 1999; Liu 
and Lampinen, 2002). As the time and the cost required running reservoir simulation 
models increased, proxy models grew in popularity in the petroleum engineering field. 
Although they are fast and relatively easy to develop, there is still a long way to 
completely surpass full field reservoir simulation models in reservoir management plans, 
mainly due to practicality concerns. Response surface models and reduced order models 
constitute the most famous types of proxy models used in petroleum engineering 
(Goodwin, 2015). Reduced order modelling aims to transfer the high dimensional models 
into a meaningful representation of reduced dimensionality. In recent years, there have 
been some attempts in using reduced order models for history matching, uncertainty 
quantification, and optimisation (Cardoso, 2009; Cardoso and Durlofsky, 2010; He et al., 
2011; Bazargan and Christie, 2012; Wu et al., 2013; Klie, 2013; Gildin et al., 2014). 

Another approach recently going through a fast development is data-driven 
modelling. Data-driven modelling analyses the available data from a system using 
machine learning methods. Typically, data-driven modelling finds the connections 
between different components of a system without any explicit knowledge of the physical 
behaviour of these components. Statistical methods, the application of artificial neural 
networks (ANNs), and fuzzy logic are examples of data-driven modelling approaches. 
Surrogate reservoir models (SRMs), a relatively new technology in reservoir modelling 
and simulation, employ artificial intelligence and data mining (AI&DM) techniques and 
are meant either to replace or to complement existent reservoir simulation models. 
Examples of applications of data-driven proxy models can be found in the literature 
(Alimonti and Falcone, 2004; Artun et al., 2009; Graf et al., 2011; Fedutenko et al., 2012; 
Dzurman et al., 2013; Klie, 2015). 

2 Surrogate reservoir models 

‘Surrogate reservoir modelling’ is the terminology used to describe the new technology in 
reservoir modelling and simulation that employs AI&DM techniques. That they originate 
from the existing reservoir simulation models is important for these relatively new tools 
of fast track and comprehensive reservoir analysis which receive approximations of the 
full field three dimensional numerical reservoir models and are capable of accurately 
capturing the behaviour of these full field models (Mohaghegh, 2014). In this study, the 
SRMs are built based on ANNs. ANNs are nonlinear data-driven, fact and example 
based, and most importantly self-adaptive approaches. These characteristics render them 
an ideal modelling tool for petroleum engineering problems (Haykin, 2008; Kriesel, 
2011). 

The fast track modelling abilities of SRMs suit the necessity of having models with a 
high resolution, accuracy, and pace in the reservoir management workflow. 

When the purpose of developing an SRM is to use it in a history matching study, 
SRM outputs describe the reservoir properties at the well location (for example, the well 
production). In this case, the SRM is referred to as a well-based SRM. If the outputs are 
at the grid level (such as pressure and saturation at grid block), the model is known as a 
grid-based SRM. Also, depending on the objective of the study, the training realisations 
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required for the SRM development vary in regard to geological properties or operational 
conditions. For instance, a history matching study requires changing the geological 
characteristics, and a production optimisation analysis needs variation in operational 
conditions. An uncertainty assessment study might include both types of properties. In 
order to have a successful SRM, several important points should be considered. For 
instance, preparing and assembling the realisations of the reservoir simulation in a way 
that suits the features of AI&DM techniques are critical. The skill and knowledge of the 
user in reservoir engineering as well as the basics of AI&DM techniques play an 
important role for this purpose. The details in the development and application of SRMs 
have been thoroughly discussed (Shahkarami, 2014). 

The potential of SRMs have been previously proven, when an SRM was created for a 
synthetic reservoir model of a heterogeneous oilfield with 24 production wells and 30 
years of production history (Shahkarami et al., 2014a). Consequently, the SRM was used 
as the substitute of the full field reservoir simulation model in the history matching 
process. By tuning only one reservoir characteristic – permeability – throughout the 
reservoir, the SRM performed the history matching. Overall, the study validated the 
potential of the SRM for a fast track and accurate reproduction of the numerical model 
results during history matching. 

Application of SRMs as approximations of the full-field three-dimensional numerical 
reservoir models have been utilised in areas such as sensitivity analysis (Amini et al., 
2014; Shahkarami et al., 2014a), production optimisation (Mohaghegh, 2014), and 
uncertainty assessment (Tayari et al., 2015). 

This article furthers the investigation of SRM capabilities in order to achieve the 
history match of a real-life problem. For this purpose, we selected a standard test 
reservoir model, known as the PUNQ-S3 reservoir model in petroleum engineering 
literature, which represents a small size industrial reservoir engineering model (Floris  
et al., 2001). This model has been formulated to test the ability of various methods in 
history matching and uncertainty quantification. The SRM was developed (trained, 
calibrated, and validated) using a small number of geological realisations of the  
PUNQ-S3. We determined that the uncertain properties in this model were the 
distributions of porosity and the horizontal and vertical permeabilities. In order to 
complete an automated history matching workflow, the newly generated SRM was 
coupled with a global optimisation algorithm called differential evolution (DE). The DE 
optimisation method is considered a novel and robust optimisation algorithm from the 
class of evolutionary algorithm methods (Das and Suganthan, 2009; Neri and Tirronen, 
2010). The automated workflow was able to produce multiple realisations of the 
reservoir, which matched the reservoir past performance. The successful matches were 
utilised to quantify the uncertainty in the prediction of cumulative oil production. 

3 DE optimisation algorithm 

Storn and Price (1995) developed the DE algorithm as a stochastic population-based 
algorithm for continuous and real-valued numerical optimisation problems (Storn and 
Price, 1997; Price and Storn, 1997; Price et al., 2005). The DE belongs to the category of 
evolutionary algorithms, and, like other evolutionary algorithm methods such as genetic  
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algorithms, it consists of three steps: mutation, recombination, and selection. Because of 
its simple mathematical structure, the DE constitutes a very effective global optimisation 
algorithm. The low number of control parameters renders the DE simple, fast, and easy to 
apply. 

The DE algorithm randomly generates the first set of solutions, consisting of N 
vectors. After obtaining the objective function values for each of N members, the 
algorithm randomly combines two vectors among the current population and calculates 
the difference vector between these two members. The difference vector is then 
multiplied by a real number called the scaling factor (F  [0, 2]) that controls the 
perturbation of this vector. Next, the scaled difference vector is added to a third randomly 
selected vector. After a crossover stage to increase population diversity, objective 
function values are evaluated for each member of the population. Each trial vector is now 
compared against the population vector of the same index and wins the competition if it 
has a lower objective function value, in the case of a minimisation problem. A detailed 
description of the DE can be found in (Shahkarami, 2014). 

The DE algorithm has been recently applied to a variety of petroleum engineering 
case studies (Wang and Buckley, 2006; Decker and Mauldon, 2006; Jahangiri, 2007; 
Hajizadeh et al., 2009b, 2010; Wang and Gao, 2010; Wang et al., 2011; Mirzabozorg  
et al., 2013; Okano, 2013). 

4 Implementing the SRM on the PUNQ-S3 problem 

4.1 The PUNQ-S3 reservoir model 

The PUNQ-S3 reservoir simulation model was built during the PUNQ project. PUNQ, 
which stands for the Production forecasting with Uncertainty Quantification, took shape 
as a study supported by the European Union and conducted by Ten European Companies, 
universities, and research centres (Floris et al., 2001). The reservoir model was built with 
the data extracted from a real field operated by Elf Exploration and Production (Floris  
et al., 2001; Barker et al., 2001) and is used widely as a standard synthetic test case to 
investigate the capability of different methods of history matching and uncertainty 
quantification (Floris et al., 2001; Barker et al., 2001; Gu and Oliver, 2005; Gao et al., 
2005; Abdollahzadeh et al., 2011). 

The reservoir model consists of 19 × 28 × 5 grid blocks (180 m by 180 m), of which a 
total of 1,761 grid blocks are active. The geometry of the field has been modelled using 
corner-point geometry. A fault bounds the field in the east and south, and a somewhat 
strong aquifer borders it to the north and west. The presence of the aquifer and the 
resulting pressure prevents the addition of injection wells. Apart from the borders, a small 
gas cap in the first layer and in the centre of the dome-shaped structure impedes the 
drilling of wells in the first layer. 

Figure 1 demonstrates the top structure of the PUNQ-S3 reservoir model. As Figure 1 
indicates there are six production wells drilled in the reservoir. Layers one and two are 
left without perforation. The other layers are completed for different wells: wells PRO-1, 
PRO-4, and PRO-12 are perforated in layers 4 and 5. The wells PRO-5 and  
PRO-11 are completed in layers 3 and 4 and PRO-15 is perforated only in layer 4. 
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Figure 1 The top structure of the PUNQ-S3 (see online version for colours) 

 

Notes: The field is bounded to the east and south by a fault, and links to the north and 
west to a fairly strong aquifer. In addition, there is a small gas cap in the centre of 
the dome shaped structure (Floris et al., 2001). 

So that the model yields similar or identical data for each of the groups involved in the 
PUNQ project, a ‘true’ case was designed. The main characteristics needed to generate 
the ‘true’ case were porosity and permeability (horizontal and vertical) distributions. The 
values of these properties at well sites were taken from the original field, operated by Elf 
Exploration and Production. Barker et al. (2001) explain the comprehensive procedure of 
creating the porosity and permeability distributions for the ‘true’ case (Barker et al., 
2001; PERM, 2014). The outputs of the ‘true’ case were considered as actual historical 
data. Following are the available data provided for the PUNQ-S3 reservoir model: 

 porosity and permeability values at well locations 

 geological descriptions for each layer 

 production history for the first eight years, for the history matching study 

 cumulative production (total oil recovery) after 16.5 years, for the uncertainty 
quantification and production forecast study 

 PVT, relative permeability and Carter-Tracy aquifer dataset all taken from the 
original field data 

 no capillary pressure function 

 gas oil contact (GOC) and water oil contact (WOC) values. 
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5 SRM development 

The SRM is constructed based on a spatio-temporal database. Depending on the objective 
of the study, the database would contain different types of data resulting from different 
realisations of the reservoir simulation model. The main goal of the database is to teach 
the new model fluid flow phenomena in the reservoir. Data included in this database can 
be categorised as either static or dynamic. The static data refer to properties that remain 
constant overtime such as porosity, permeability, top depth, and thickness. In contrast, 
dynamic data are not necessarily fixed overtime and may include operational constraints, 
well production, and pressure or phase saturations at the grid blocks. 

For the current project, porosity and horizontal and vertical permeabilities constitute 
the uncertain properties for developing the SRM and matching the field performance. 
These properties represent the most common uncertain reservoir characteristics employed 
to match the history data of PUNQ-S3 as indicated by the current literature 
(Abdollahzadeh et al., 2011; Li and Daoyong, 2011). Mirroring reality, these properties 
are measured at the well locations – through well logging and core data samples, for 
instance. Additionally, the provided geological descriptions of this model indicate the 
streaks of high porosity/permeability profiles in the reservoir (Floris et al., 2001; Barker 
et al., 2001). This type of information helped to generate the training realisations. 

5.1 Informative simulation runs representation of reservoir uncertainties 

The spatio-temporal database stockpiles information from the different realisations of the 
reservoir simulation model. Again, depending on the goal of study, data preparation 
would differ. Reservoir simulation realisations also differ from one another in the value 
of the variable uncertain properties. These uncertain properties represent the variables 
whose impact on the output of the reservoir model the study seeks to analyse. 

Based on the property values provided at the well sites and on the geological 
descriptions, ten different realisations of the reservoir were created. In order to generate 
these realisations, a sampling method (Latin Hypercube) was utilised. A detailed 
discussion on generating these realisations has been presented (Shahkarami, 2014). 

Although SRM does not need a high number of simulation runs, there are no rules to 
identify the exact number of realisations required to have a perfect SRM. Many criteria 
can increase or decrease the number of runs required for developing an SRM. The 
complexity of the problem, particularly the level of reservoir heterogeneity, is an 
important factor. In general, the run number selection is based on a rule of thumb process, 
in which the user’s experience could be helpful. However, it is obvious that if the number 
of simulation runs is too small, the SRM may not be able to catch the uncertainty and the 
variation in the parameters. In this situation, the surrogate reservoir model might even 
show good results for the training samples; here is where the validation step plays an 
important role. Although the SRM might have a good performance on the training 
samples, it will fail to create the same quality for the validation set. Therefore, the 
validation examples will expose the lack of required information in the training samples. 
Alternatively, if the number of simulation runs is too large, there is no need to develop an 
SRM since the solution is close to the original problem, which entails a high number of 
simulation runs. This is a problem that occurs frequently for the case studies involving 
geo-statistical-based proxy models. In these cases, the cost of developing the proxy 
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model is too high and is not justified. In this study, we selected ten realisations based on 
the experience of previous research studies (Sampaio et al., 2009; Shahkarami et al., 
2014a, 2014b; Amini et al., 2014). The robustness of the validation results, discussed in 
the results section, indicates that the decision to select ten runs was right. 

5.2 Reservoir delineation and tier system 

Data summarisation is an essential task during SRM development. One method of data 
summarisation entails delineating the reservoir into different segments and calculating an 
average of data over each reservoir segment. In order to divide the reservoir into the 
abovementioned segments, we used feedback from the available geological descriptions 
and we employed a modified version of the Voronoi diagrams (Erwig, 2000; Gomez  
et al., 2009). Figure 2 depicts the designed drainage areas created by means of the 
modified Voronoi theory. Consequently, every drainage area is divided into four tiers. 
The first tier represents the well block, which has a significant impact on the well 
behaviour. The second tier includes the first row of grid blocks around the well block. 
The third tier is composed of the next row of grid blocks around the second tier. Finally, 
the remaining grid blocks in the drainage area are summed up in the fourth tier. The 
average value of reservoir characteristics was calculated at each tier and assigned to the 
corresponding well and tiers in the database. Figure 3 sketches an example of the 
designed tier system in this study. 

Figure 2 The drainage areas assigned to the wells in different layers based on a modified version 
of the Voronoi diagram (see online version for colours) 

 

Figure 3 The designed tier system for the PUNQ-S3 reservoir model (see online version  
for colours) 
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5.3 SRM inputs and outputs 

Due to the complexity of the PUNQ-S3, a higher number of input parameters had to be 
considered in this case study compared to the previous examples (Shahkarami et al., 
2014). The oil production rate constituted the main constraint during the reservoir’s eight 
years of production. Thus, the outputs of the PUNQ-S3 that need to be matched were: the 
well bottom-hole pressure, the gas production rate, and the water production rate. For 
each one of these outputs, one ANN was created (yielding three ANNs in total). The 
outputs are considered at each time step. 

This particular SRM is well-based. That means that the SRM predicts the outputs at 
the well location for different time steps. Therefore, the spatio-temporal database 
includes different records. To be exact, the number of records is equal to the number of 
wells multiplied by the number of time steps. Each record has inputs and output(s). The 
inputs should always be provided. At the training phase, the outputs should also be 
known. However, during the predictive phase, we provide the inputs and the SRM 
(ANNs) will predict the outputs. 

The PUNQ-S3 model comprises five layers and a total of six wells. As elucidated 
above, each drainage area was divided into four tiers and three uncertain parameters were 
considered: the porosity and the horizontal and vertical permeabilities. Therefore,  
we identified 360 uncertain or adjustable parameters (5 layers × 4 tiers × 6 wells ×  
3 properties), which could be tuned to match the history data. In order to build the SRM, 
we needed to include at least 60 parameters for each well. These do not contain the other 
types of data such as thickness and top for each tier. Overall, we created a database with 
more than 120 inputs. Figure 4 summarises the types of inputs and outputs in the  
spatio-temporal database for the PUNQ-S3. Selecting the right inputs raises considerable 
challenges, and many artificial-based models fail at this step (Zubarev, 2009; Mohaghegh 
et al., 2012). 

Figure 4 Inputs and outputs available in the spatio-temporal database for the PUNQ-S3 SRM 
(see online version for colours) 

 

Table 1 to Table 3 show the selected inputs for the three ANNs. Selecting the inputs of 
the SRM entails certain pre-processing steps (Shahkarami, 2014). The inputs generally 
include static and dynamic data. All three ANNs share time and oil production rate as 
their common inputs. In addition, we included the output of each ANN at the time steps 
behind, as an input for the next time step. For example, to predict the well bottom-hole 
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pressure at time t, the well bottom-hole pressures at one (t – 1) and two (t – 2) time steps 
behind are employed as ANN inputs. 
Table 1 Selected inputs for the well bottom-hole pressure network 

Static inputs Dynamic inputs Output 
Latitude (X) @ Well block Well bottom-hole 

pressure @ (t – 1) 
and (t – 2) 

Well bottom-hole 
pressure 

Longitude (Y) 

Horizontal permeability @5 layers and 4 tiers Time 
Vertical permeability @5 layers and 4 tiers 
Thickness @5 layers and 4 tiers Oil production rate 

(well constraints) Top depth @5 layers and 4 tiers 

Table 2 Selected inputs for the gas production rate network 

Static inputs Dynamic inputs Output 

Latitude (X) @ Well block Gas production rate 
@ (t – 1) and (t – 2) 

Gas production  
rate 

Longitude (Y) 
Horizontal permeability @5 layers and 4 tiers Time 
Vertical permeability @5 layers and 4 tiers 
Thickness @5 layers and 4 tiers Oil production rate 

(well constraints) Top depth @5 layers and 4 tiers 

Table 3 Selected inputs for the water production rate network 

Static inputs Dynamic inputs Output 
Latitude (X) @ Well block Water production 

rate @ (t – 1) and 
(t – 2) 

Water production 
rate 

Longitude (Y) 

Horizontal permeability @5 layers and 4 tiers Time 
Vertical permeability @5 layers and 4 tiers 
Thickness @5 layers and 4 tiers Oil production rate 

(well constraints) Top depth @5 layers and 4 tiers 

5.4 Training, calibrating, and validating the ANNs 

The SRM training includes three different steps: training (learning), calibration, and 
validation. Consequently, the spatio-temporal database is divided into three sets: the 
training or learning set, the calibration set, and the validation or verification set. The 
training set constitutes the part of the database used directly to train the ANNs, which are 
adapted to this set to match the provided outputs. The calibration set is not used to adjust 
the outputs but to assure that any increase in accuracy over the training dataset will lead 
to an increase in accuracy over a set of data not used for training the ANNs. The 
calibration dataset helps determine when the training stops, and also prevents over-fitting 
the ANNs. We do not want the ANNs just to memorise the behaviour of the training set. 
A well-trained ANN will perform with accuracy beyond the learning set. Lastly, the 
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verification set represents the part of the database that verifies the predictability of the 
trained ANNs, and, subsequently, this dataset is not used to train the ANNs. 

In this study, 80% of the database was used as a training set, 10% for calibration and 
the last 10% for the validation set. Corresponding to the total number of outputs we 
created three networks. All three networks contain one hidden layer (Figure 5). The SRM 
integrates three neural networks after the training process is completed. The elapsed time 
to perform the training process (learning, calibration, and verification) is negligible, 
particularly when it is compared to the reservoir simulation run-time. 

Figure 5 ANN structure used for training the SRM (see online version for colours) 

 

As a further validation step, ‘Blind verification’ tests the robustness of SRM. The term 
‘blind’ indicates a set of realisation(s) that has not been used during the training process. 
These blind testing sets are complete realisations of the reservoir, whereas the 
verification set used in the training process is a randomly selected portion of the  
spatio-temporal database. 

6 Automated history matching 

During the final stage, we combined the developed and validated SRM with the DE 
optimisation algorithm to construct an automated history matching workflow. 

The following equations are among the most common objective functions used for the 
history match process (CMG, 2013). The objective function computes the relative 
difference between the SRM results and the measured production data. Equation (1) 
calculates the relative differences at the well level. The subscripts i and t represent well 
and time, respectively. Nt(i, j) is the total number of measured data points for each well i 
and property j. s

i,tY  are the predicted production by SRM and m
i,tY  are the measured 
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production data. m
iY  is the scale calculated by subtracting the maximum and minimum 

of measured production data for well i. N(i) is also the total number of properties required 
to be matched (for example oil production, gas production, water cut). Although for a real 
case, measurement error should be considered in the calculation, we assume this kind of 
error does not exist in this study. 

In practice, it is common to consider that the quality and importance of measured data 
may be different for some specific properties, time intervals, and wells. Therefore, some 
weighting factors (twi,j) are present in these equations. For instance, let us assume the 
measured data for a specific well over a particular time period have been recorded at a 
higher resolution using a better quality recording device. The user might want to value 
this part of data more than the rest. This would be possible simply by increasing the 
weighting factors for the specific well and time periods. In this study, we assume all the 
wells, time steps, and properties have the same impacts and the corresponding weighting 
factors are equal to one. 
 Individual well objective function 

Nt(i, j) 2s m
i, j,t i, j,tt 1

N(i)

i i, jN(i) m
i, jj 1i, jj 1

Y Y

Nt(i, j)1OF .100%.tw
Ytw

 (1) 

It is also common to define a global objective function in order to have calculations in the 
field level. Equation (2) describes the global objective function using the well level 
objective function, which we defined in equation (1). Here OFglobal denotes the global 
objective function, OFi represents the objective function for well i, and Nw stands for the 
total number of wells. wi is the defined weight for well i. Again, in this study, we 
consider all the measured data points being equally important and the weighting factors 
being equal to one. 
 Global (field) objective function 

w

w

N

global i iN
i 1ii 1

1OF w OF
w

 (2) 

7 Results 

The development and application of the SRM in the history matching of PUNQ-S3 
yielded interesting results. We randomly selected two wells (Wells PRO-1 and PRO-4) 
out of six wells to represent the results. 

7.1 The SRM training 

The first set of results belongs to a training realisation used to train the SRM. 
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Figure 6 Comparison of the well bottom-hole pressure profile generated by the SRM (indicated 
by blue markers) with the similar results from a numerical simulator (CMG-IMEXTM) 
for a training realisation of the PUNQ-S3, wells PRO-1 and PRO-4 (see online version 
for colours) 

 

Figure 6 depicts a comparison between the well bottom-hole pressure results generated 
by the SRM and similar results collected from the simulator CMG-IMEXTM (CMG, 
2013). Figure 6 portrays two profiles corresponding to the bottom-hole pressure profiles 
of PRO-1 and PRO-4. The blue markers indicate the SRM results over a period of eight 
years (almost 3,000 days) of the reservoir life compared to the simulator outputs showed 
by the red line. The oil rate is the main constraint during this period. Consequently, we 
matched the bottom-hole pressure, the gas production rate, and the water production rate. 
As it is obvious visually, the training is carried out very well for the bottom-hole 
pressure. The SRM is able to capture the fluctuation in the bottom-hole pressure of the 
training data. 

Figure 7 depicts the results of the gas production rate for a training realisation. It is a 
comparison between the results from the SRM and from the simulator for the wells  
PRO-1 and PRO-4 in the PUNQ-S3. The quality of the training results is high. The SRM 
has detected the shut-in periods (zero gas rate) and production peaks very well. 
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Figure 7 Comparison of the gas production rates generated by the SRM (depicted by the blue 
markers) with the similar results from the numerical simulator for a training realisation 
of the PUNQ-S3 (see online version for colours) 

 

Across the eight years of history data, only one well, the PRO-11, has water 
breakthrough. Figure 8 compares the results of the water production rate generated by the 
SRM and analogous results obtained from the simulator. Although no water production 
can be observed during the first five years of history data, we begin to observe some 
gradually thereafter. Noticeably, the SRM is able to properly capture the zero water 
production rate. 

Figure 8 Comparison of the water production rate generated by the SRM (depicted by the blue 
markers) with the similar results from the numerical simulator for a training realisation 
of the PUNQ-S3 (see online version for colours) 
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Figure 9 Validating the SRM using a blind run (see online version for colours) 

 

Note: Comparison of the well bottom-hole pressure from the SRM with the results from 
the numerical simulation model for the PUNQ-S3. 

Figure 10 Validating the SRM using a blind run (see online version for colours) 

 

Note: Comparison of the gas production rate profile from the SRM with the results from 
the numerical simulation model for the PUNQ-S3. 
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Figure 11 Validating the SRM using a blind run (see online version for colours) 

 

Note: Comparison of the water production rate profile, in well PRO-11, from the SRM 
with the results from the numerical simulation model for the PUNQ-S3. 

7.2 The blind verification run 

In order to insure that the SRM has a good performance on the set of data not utilised 
during the training process, we implemented the trained SRM on a completely blind 
realisation. Figure 9 depicts the validation results for the well bottom-hole pressure 
profiles of wells PRO-1 and PRO-4 in the blind run. Like in the training results, the blue 
markers represent the SRM results while compared with the simulator outcome, denoted 
by the red line. Figure 10 and Figure 11 illustrate the validation results for the gas 
production and the water production rates, respectively. Although the blind verification 
realisation was not used during the training stage, the SRM shows a good accuracy over 
these data. 

7.3 History matching 

Once the validation stage completed, we used the SRM in an automated history matching 
workflow. A notable benefit of the automated history matching workflow is the ability to 
offer multiple realisations that match the field data. In this study, we selected the top ten 
best matches. Figure 12 displays the results of history matching for the well bottom-hole 
pressure for wells PRO-1 and PRO-4. Each diagram compares the results of the top ten 
matches (marked by the blue lines) with the actual data (demarcated by the red circles). 
The top ten matches are the result of ten different realisations of the reservoir 
characteristics. The visible range in Figure 12 depicts the uncertainty of reservoir 
properties. 
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Figure 12 History matching results of the well bottom-hole pressure for wells PRO-1 and PRO-4 
(see online version for colours) 

 

Note: Comparison of ten best matches (depicted by the blue lines) coming from the SRM 
with the actual data (indicated by the red circles). 

Figure 13 demonstrates the comparison between the ten best matches (delineated again 
by the blue lines) and the actual data (represented through the red circles), for the gas 
production of wells PRO-1 and PRO-4. The left side graphs indicate the gas production 
rate, while the right side diagrams denote the cumulative gas production. 

Figure 14 compares the results of the top ten matches with the actual data for the 
water production. In Figure 14, the diagram on the left illustrates the water rate 
production, and the diagram on the right side depicts the cumulative water production, 
both for well PRO-11. 
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Figure 13 History matching results of the gas production, (a) the production rates  
(b) the cumulative production (see online version for colours) 

 
(a)     (b) 

Notes: Comparison of ten best matches (marked by the blue lines) coming from the SRM 
with the actual data (marked by the red circles). The data belong to the wells 
PRO-1 and PRO-4. 

Figure 14 History matching results of the water production, (a) the production rates  
(b) the cumulative production (see online version for colours) 

 
(a)     (b) 

Notes: Comparison of ten best matches (marked by the blue lines) coming from the SRM 
with the actual data (marked by the red circles). In this study, we have just one 
well (PRO-11) with water breakthrough during eight years of production history. 
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Figures 15 and 16 display the distributions of porosity and horizontal permeability for the 
ten best history matched realisations. The ‘true’ maps of porosity and permeability are 
also included in Figures 15 and 16. 

Figure 15 Ten best matched porosity distributions compared with the ‘true’ porosity distributions 
of PUNQ-S3 reservoir model (see online version for colours) 

 

Figure 16 Ten best matched horizontal permeability distributions compared with the ‘true’ 
horizontal permeability distributions of PUNQ-S3 reservoir model (see online version 
for colours) 
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7.3 Importing the matched reservoir characteristics into the simulator 

The developed SRM was aimed to substitute an industrial reservoir simulator  
CMG-IMEXTM (CMG, 2013) during the history matching process. Thus, we designed 
an automated SRM-based history matching workflow. This workflow can provide 
multiple realisations of the reservoir, which match the actual data. We chose ten best 
matches. These ten realisations were imported into the simulator so that we can observe 
the performance of the simulator with inputs coming from the SRM. Figure 17 
demonstrates the field cumulative oil production results of the simulator after importing 
the matched properties (match #1) from the SRM into the simulator. This graph compares 
the simulator results (red line) with the actual field cumulative oil production (blue 
circles). We used eight years of field data for history matching purposes. In addition to 
the eight years of history data, PUNQ project has published the field cumulative oil 
production after 16.5 years. Many studies have used this data for future forecast 
comparisons (Floris et al., 2001; Barker et al., 2001). The green point in Figure 17 
represents the provided value for the field cumulative oil production after 16.5 years. 

Figure 17 Comparison between the SRM-based history matching results (match #1) and actual 
data for cumulative oil production (see online version for colours) 

 

Notes: The red line represents the matched realisation and the blue circles indicate the 
actual field data (eight years of production history). The green point also displays 
the cumulative production for a true case after 16.5 years. 

Similar to the oil production, Figure 18 shows the comparison between the simulator 
results and actual field data for cumulative gas production. 

 

 



   

 

   

   
 

   

   

 

   

    Assisted history matching using pattern recognition technology 433    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 18 Comparison between the SRM-based history matching results (match #1) and actual 
data for cumulative gas production (see online version for colours) 

 

Notes: The red line represents the matched realisation and the blue circles are the actual 
field data (eight years of production history). The green point also displays the 
cumulative production for a true case after 16.5 years. 

Figure 19 Comparison between the SRM-based history matching results (match #1) and actual 
data for cumulative water production (see online version for colours) 

 

Notes: The red line represents the matched realisation and the blue circles indicate the 
actual field data (eight years of production history). The green dot also displays 
the cumulative production for a true case after 16.5 years. 



   

 

   

   
 

   

   

 

   

   434 A. Shahkarami et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

The water breakthrough occurs during the seventh year at one well only (PRO-11). 
Therefore, except for the well PRO-11 that produces water, the other wells have an 
overall negligible water production. Figure 19 compares the cumulative water production 
between the simulator and the actual data. 

8 Discussion and concluding remarks 

In this study an SRM was developed for the PUNQ-S3 reservoir simulation model. The 
PUNQ-S3 is widely accepted as a standard reservoir simulation model to test the ability 
of different methods on history matching and uncertainty quantification. The 
characteristics of this model render PUNQ-S3 a unique case for the study of the SRMs 
potential for history matching. The variable properties employed to create the SRM are 
the porosity and the permeability (horizontal and vertical) distributions. In order to train 
the SRM, ten realisations of PUNQ-S3 simulation model were generated. An extra 
realisation (the 11th case) was used to verify the trained SRM. 

One important feature of an effective history matching workflow is its automation 
ability. Therefore, the developed SRM was coupled with the DE optimisation algorithm. 
The objective functions were created to calculate the misfit values between the actual 
data and the measured results (SRM). The goal of the history matching process was to 
match eight years of history data available for three different properties. These properties 
include the well bottom-hole pressure, the gas production rate, and the water production 
rate. This workflow was able to report multiple realisations of the reservoir that matched 
the actual data. Beside the eight years of history data, the PUNQ project provides the 
field cumulative oil production after 16.5 years for the purpose of future production 
comparison. 

8.1 SRM training quality 

Figure 6, Figure 7, and Figure 8 show the results of SRM during the training process for 
the well bottom-hole pressure, the gas production rate, and the water production rate, 
respectively. These graphs portray the comparison between the SRM results with the 
simulator outputs for two representative wells, PRO-1 and PRO-4. The superb match 
between the results of the SRM and those from the simulator proves that the SRM has 
been well-trained. The ability of the SRM to capture the zero values of gas and water 
production rates appears clearly in Figure 7 and Figure 8. 

8.2 SRM further validation quality 

Figure 9, Figure 10, and Figure 11 depict the performance of the SRM on a completely 
unseen realisation of the reservoir during the training process. This step, referred to as 
‘blind realisation’, reveals the robustness of the SRM. The quality of the match for the 
blind case, as seen in these graphs, is not as good as the training realisations given by 
Figure 6, Figure 7, and Figure 8. This is an expected response of the SRM to a set of data 
not used in the SRM training. For example, in Figure 10 illustrating the validation results 
for the gas production rate, the SRM gives a slightly overestimated prediction for the well 
PRO-4. One important point about data-driven approaches like the SRM is that the 
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quality of the prediction performance is very good as long as the inputs are at the same 
range as they were in the training sets. 

8.3 History matching quality 

The trained and verified SRM was used to perform history matching. Figure 12,  
Figure 13, and Figure 14 designate the results of ten best history matched realisations. 
The results represent the outputs of the SRM. These graphs capture the comparison 
between the ten best matches and the actual data for the well bottom-hole pressure, the 
gas production rate, the cumulative gas production, the water production rate, and the 
cumulative water production. The matches for the well bottom-hole pressure and the gas 
production rate are satisfactory. However, when it comes to the water production rate 
(Figure 14), the matches are not as good as the well bottom-hole pressure and the gas 
production rate. In fact, the SRM overestimates the water production. This observation 
reveals one important characteristic of the SRM and other similar data-driven approaches. 
These methods are developed based on data, and the inability to provide sufficient 
information during the training stage will cause problems during the prediction step. 
Among the three properties that the SRM was developed to predict, the water rate 
production has the minimum amount of information in the training realisations. If we go 
back to the PUNQ-S3 reservoir model, out of six wells there is only one well (well  
PRO-11) that produces water. In addition, water production begins at the end of the 
production profile. In other words, out of 37 data points, there are only three non-zero 
water production points, which makes just 8% of the data. As it is clear from Figure 14 
and Figure 19, the matches capture the zero values of water production very well. For the 
non-zero values of water production, although the SRM knows that they are not zero, the 
results indicate an overestimation. One way to address this issue is to provide more  
non-zero examples of water production rates during the training step. 

Figures 15 and 16 compare the ten best matched distributions of porosity and 
horizontal permeability with the ‘true’ reservoir model. One common problem of history 
matching approaches is that the matched property distributions not always ensure the 
geologic consistency. In this study, the implemented reservoir delineation and tier 
system, Figures 2 and 3, constrained our history matching workflow in order to maintain 
the geologic consistency. For the PUNQ-S3 reservoir, a part of provided data is the 
geological descriptions for each layer (Floris et al., 2001). This information guided us in 
designing the reservoir delineation and tier system. However for a green reservoir with 
little geologic information available, this step of SRM development could be a challenge. 

Figure 17 displays the results of the best achieved match imported into the simulator. 
Figure 17 compares the results of this realisation with the actual data for the field 
cumulative oil production. The results indicate a good match for the eight years of 
available history. Also, this graph predicts the field cumulative oil production for the next 
8.5 years. At the end of this time period, the prediction performance has been compared 
with the reported value. Although the match shows an excellent quality, the prediction is 
slightly overestimating future production. Figure 18 and Figure 19 represent the same 
comparison for the field cumulative gas and water production. For gas production, we 
note the same overestimating behaviour; in contrast, the water production has been 
slightly underestimated. 
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In the term of coupling the SRM with an optimisation algorithm, we selected the DE 
based on the results of previous studies (Wang and Buckley, 2006; Decker and Mauldon, 
2006; Jahangiri, 2007; Hajizadeh et al., 2009b, 2010; Wang and Gao, 2010; Wang et al., 
2011; Mirzabozorg et al., 2013; Okano, 2013). We concentrated on studying the 
performance of the SRM as a data-driven technique to assist history matching. However, 
we found out that the DE is a powerful algorithm in identifying optimum values. The  
run-time of the SRM takes fractions of a second, and therefore its run time and 
computational cost are not problematic. Nevertheless, the DE was able to converge to the 
optimum solutions within the couple hundreds runs. 

The general results in this study demonstrate the robustness of the SRM in history 
matching for the PUNQ-S3 problem. Numerous studies have used the PUNQ-S3 
reservoir model to test methods of history matching, and many of these studies 
investigate different optimisation methods for automated history matching. Generally, 
these optimisation algorithms have been coupled with a commercial simulator. The 
reported numbers of simulation runs for history matching in the PUNQ-S3 reservoir 
model are in the order of thousands (Hajizadeh et al., 2010, 2009a, 2009b; 
Abdollahzadeh et al., 2011). In our study, the required simulation runs to create and 
validate the SRM (11 runs) are very few. Although the run-time is not an issue for the 
PUNQ-S3 reservoir simulation model, in reality, a typical reservoir simulation model is 
more time-consuming to run and requires a higher computational cost. In such a case, 
using a numerical reservoir simulator for history matching would pose a major 
computational issue. The application of the SRM for history matching purposes would be 
a great asset in the reservoir management workflow. 

SRMs require a low development cost during the development and implementation 
stages. An SRM usually requires a few realisations of the reservoir simulation models. 
The main limitation of SRMs is that they are example based and case-subjective. SRMs 
are developed based on the training examples and their accuracy is tied to the quality of 
the training examples. It also means that there is no general SRM that serves all problems 
and scenarios. Depending on the problems, SRMs are trained and validated using the 
examples of the problem. For instance, an SRM developed for a history matching a 
reservoir will not be suited for the history matching another reservoir. In addition, the 
SRM will not be useful for another study like reservoir production optimisation. 
Nevertheless having enough information, it is convenient to build the right SRM for the 
right job. 
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Nomenclature 

F Scaling factor in the DE algorithm 
i Subscript counter for well 
j Subscript counter for property 
GOC Gas oil contact 
N Number of members for a solution vector in the DE algorithm 
N(i) Total number of properties 
Nt(i, j) Total number of measured data points for each well i and property j 
Nw Total number of wells 
OFglobal Global objective function 
OFi Objective function for well i 
t Time step counter 
twi,j Weighting factor for well i and property j 
wi Weighting factor for well i 
WOC Water oil contact 
YS

(i,t) Predicted production by SRM 
Ym

(i,t) Measured production data 
m
iY  Difference between maximum and minimum of measured production data for well i 
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