Analysis of flow field of hydrodynamic suspension polishing disk based on multi-fractal method
by Xiaohang Shan; Biqing Ye; Li Zhang
International Journal of Computing Science and Mathematics (IJCSM), Vol. 9, No. 1, 2018

Abstract: Amorphous film is an important amorphous material, which has a wide application prospect in the aspects of electronics, mechanics, chemical industry, national defence and so on. The quality of amorphous film substrate has a significant impact in the amorphous film performance. Hydrodynamic suspension polishing is a super-smooth and non-damage polishing method, which is suitable for the processing of amorphous film substrate. The characteristic of disk's flow field is the key factor for influencing the quality of polishing. The movement and distribution of abrasives in flow field is analysed in this paper by high speed photography technology. The distribution of bubbles and abrasives is extracted by MATLAB in the dynamic flow field of hydrodynamic suspension polishing based on fractal and multi-fractal theory. The multi-fractal spectrum is calculated and the association of multi-fractal spectra is analysed. The results show that when buoyancy meets the requirement, the lower the polishing disk rotational speed, the more uniform abrasive distribution. Polishing effect will be better with well continuity of polishing slurry.

Online publication date: Tue, 27-Mar-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com