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Abstract: The rapid advance of artificial intelligence has made complex image processing in real 
time possible. Multilevel thresholding has become a feasible way for image segmentation, even 
in the presence of poor contrast and external artefacts. Genetic algorithms (GAs) and particle 
swarm optimisation (PSO) are broadly recognised by far to be two dominating schemes which 
outperform classical ones on multilevel thresholding. Qualitative analysis can usually be applied 
to observe their superiority to all classical approaches. However, no convincing result is reached 
with respect to differences in performance between GAs and PSO. The existing segmentation 
practices are either examined by visual appeals exclusively, or evaluated quantitatively assuming 
perfect statistical distributions. To make thorough comparisons, comparative analysis of two 
leading multilevel thresholding approaches is conducted for true colour image segmentation. The 
information theory is also employed to analyse the outcomes of systematic approaches using 
diverse quantitative metrics from various aspects. 
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This paper is a revised and expanded version of a paper entitled ‘Qualitative and quantitative 
study of GAs and PSO based evolutionary intelligence for multilevel thresholding’ presented at 
International Symposium on Advanced Topics in Electrical Engineering, Bucharest, Romania, 
23–25 March , 2017. 

 

1 Introduction 

The natural evolution inspired artificial intelligence schemes 
have been widely applied to digital image segmentation via 
thresholding or clustering. Different from conventional 
principal component analysis (PCA) and independent 
component analysis (ICA) based clustering pattern 
recognition approaches, the classical Otsu thresholding is a 
straightforward means of automatic image thresholding 
which consists of two classes of histogram-based pixels to 
generate bi-level thresholding. For multilevel thresholding 
cases, however, the fundamental Otsu approach turns out to 
be time-consuming whose optimisation can only be reached 
by exhaustive search processes. Classical approaches are 
also lack of robustness against noises and consistency in 
pixels. The role of Otsu approach is sometimes limited to 
local optimisation. Clustering is another major approach in 
which the greater similarity occurs within the same cluster 
while the smaller similarity occurs in diversified clusters. 
Integration of level set and fuzzy C-Means clustering has 
been presented where fuzzy C-Means clustering is applied 
to identify the initial surface, which will be crucial to 
dynamic level set evolution and segmentation with changing 
boundaries in space and time. For both thresholding or 
clustering, evolution computation schemes are further 
carried out to achieve global optimisation for complex 
image processing, to enhance the accuracy of segmentation 
as well as to speed up the convergence rate to reach the 
optimal performance such as genetic algorithms (GAs),  
ant colony optimisation (ACO) and particle swarm 
optimisation (PSO) (Gonzalez and Woods, 2007;  
Duda et al., 2000; Engelbrecht, 2007; Otsu, 1979; Ye et al., 
2007; Ye and Mohamadian, 2013; MacKay, 2005). 

There are many GAs applications to solve medical 
signal and image processing problems (e.g., biomedical 
sample differentiation to determine optimal baselines). 
There are also various cases that employ GAs based medical 
image segmentation to be against poor contrast and external 
artefacts, which give rise to diffusing organ and tissue 
boundaries (Ye, 2005; Maulik, 2009). The self-adaptation 
Real-Coded GAs using simulated binary crossover could be 
combined with Taguchi methods to exploit potential 
offspring. Powerful exploration capability is reached 
through tournament selection by creating tournaments 
between two solutions. It yields solutions towards global 
optimisation which is far better than others in terms of 
solution quality, handling constraints and computation time 
for economic dispatch (Subbaraj and Rengaraj, 2011). 
Crossover is another important operator of the real-coded 
GAs. A case study is conducted where 16 crossover 
operators are compared using a set of 24 benchmark  
 

functions. Statistical analysis shows significant differences 
among all crossover operators where the efficiency relies on 
distinctive properties of the fitness functions (Picek et al., 
2013). 

PSO is another leading method while hybrid PSO has 
been used for optimal multilevel thresholding. Cooperative 
learning and comprehensive learning are applied for  
extra modifications. The former is to decompose any  
high-dimensional swarm into several one-dimensional ones. 
The latter is to avoid premature convergence in each 1D 
swarm. The PSO capability is strengthened further in terms 
of better fitness values by cloning the fitter particles (Maitra 
and Chatterjee, 2008). PSO can also be applied to 
thresholding where the grey scale image is converted into a 
binary image. The optimal set of thresholds is obtained once 
the objective function is minimised. PSO has been proved to 
be superior to GAs for multilevel thresholding (Duraisamy, 
2010). A PSO-based method is also proposed to select 
multiple minimum cross entropy thresholds for complex 
image analysis rather than bi-level thresholding. It can be 
extended to multilevel thresholding such that the real-time 
complex image analysis is feasible. The convergence rate 
analysis validates its potential for real-time applications. 
This selection method supports the search for near-optimal 
thresholds (Yin, 2007). 

A preliminary quantitative analysis on the impact of 
PSO multilevel thresholding has been recently conducted 
with respect to systematic sets of objective metrics based on 
the information theory, where the number of thresholding 
levels is directly relevant to all information metrics being 
defined. The extension to multilevel and multiband image 
thresholding is proposed using PSO. Fuzzy entropy based 
optimisation has been formulated for balanced histogram 
thresholding. To accelerate the convergence rate and shorten 
computation time, the PSO based intelligent schemes are 
presented to split digital images into regions and to identify 
contours for classification with optimality (Ye and 
Mohamadian, 2015). A fractional-order Darwinian particle 
swarm optimisation based method (DPSO) is brought out to 
exploit vast swarms of test solutions that may exist at any 
time on the testing hyperspectral and multispectral image. 
Its fractional derivative is used to control the convergence 
rate of particles. It has produced a significant statistical 
improvement in terms of both CPU time and the fitness 
value. The approach can integrate with support vector 
machine (SVM) for classification with better accuracy. 
Regions and contours generated by PSO based multilevel 
thresholding manifest good visual attraction and colour 
fidelity to intrinsic information (Ghamisi et al., 2014). 

On the other hand, quantitative analysis using typical 
metrics has been successfully conducted for image  
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deblurring and image fusion (Ye and Mohamadian, 2012a, 
2012b). To further evaluate the impact of multilevel 
thresholding on true colour digital images using the leading 
GAs and PSO schemes, in this paper, a set of well-defined 
objective metrics are taken into account for comparative 
analysis, including the discrete entropy, discrete energy, 
mutual information, dissimilarity, homogeneity, correlation 
and contrast as well as the dynamic range. 

2 Multilevel thresholding 

Otsu thresholding is a conventional segmentation approach 
which uses the variance of region homogeneity as the 
measure. As a bi-level thresholding approach, the within-
class variance of two sets of pixels is to be minimised. 
Extension to multilevel thresholding is needed in most 
practices which groups image pixels into several classes. 
The 8-bit greyscale specifies the grey scale system with 
pixels on the display screen using an 8-bit value. The true 
colour specifies the colour system with pixels on the display 
screen using a 24-bit value. The latter is formulated by a 
composite of three independent RGB (red, green, and blue) 
light beams. In order to obtain optimal multilevel 
thresholding, artificial intelligence is applied to search for a 
set of global optimal thresholds at a fast convergence rate. 

The fitness is represented by an objective function in 
evolution computing. For image thresholding, it is defined 
as the sum of multilevel discrete entropies with respect to 
the occurrence of each intensity level. The occurrence 
probability for each intensity level is estimated from its 
histogram, which is a percentage of the total count of 
individual intensity levels formulated as equation (1): 
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where h(i) is the histogram function and p(i) is the 
probability function. For greyscale and true colour images, 
L is chosen to be 28 for the grey scale component and for 
each of three primary colour (R, G, B) components, 
respectively. The histogram is applied to display the  
image intensity content. It is also applied to formulate the  
cooccurrence matrix of relative frequencies. Here, 
multilevel thresholding is constructed as an N-Dimensional 
optimisation problem. N optimal thresholds (T1, T2, …, TN) 
are solved by maximising the objective function shown in 
equations (3) and (4). 
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where Hi (i = 0 to N) is the discrete entropy defined as 
equation (5). Si (i = 0 to N) is the sum of the probability 
functions between any two thresholds, defined as equation 
(6). 
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3 Genetic algorithms (GAs) 

Genetic algorithms start with a randomly generated 
population of a fixed size M. Initialisation of M individual 
populations is implemented between lower and upper limits 
of pi (pi,min and pi,max). Initialisation is conducted so as to 
select parents as equation (7), where µi is a uniformly 
distributed random number between 0 and 1. 

( ), min ,max ,min– 1,  2,  ,  i i i i ip p µ p p i M= + = …
 (7) 

For binary coding, the whole population is substituted by 
the binary strings with finite binary bits to represent 
chromosomes. The actual length determines the maximum 
possible precision. For real coding, precision is determined 
by the fixed decimal point representation of real numbers. 
Real coding outperforms binary coding for constrained 
optimisation issues, where each chromosome is encoded as 
a string of floating point numbers. The selection process 
mimics the natural survival of those fittest creatures. 
Roulette wheel selection and tournament selection are the 
two main schemes to produce offspring. The one-armed 
wheel is spun multiple times in the roulette wheel algorithm 
to make a desired selection according to the probability 
distribution. Tournament selection is faster and less 
sensitive than roulette wheel selection which is chosen in 
context so as to avoid the premature convergence. 
Tournament sets are randomly selected with a population  
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size whose objective functions are then examined among 
each other to obtain the best, second best, third best fitness, 
and so on. Corresponding probabilities of fitness functions 
are simply chosen to be θ, θ(1–θ), θ(1–θ)2, and so on, 
without loss of generality. 

Simulated binary crossover is applied subsequently to 
generate two offspring from parents. The spread factor αi is 
defined as the ratio (8) of the absolute mismatch of 
offspring values to that of parent values. It is calculated as 
equation (9) by equating the area under the probability 
curves and a generated random number, where ηc is the 
crossover index. 
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The two offspring are computed by equation (10). 
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The generated offspring are subject to polynomial mutation. 
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j j j j jq p p p β+ += + −  (11) 

In equation (11), U
jp  and L

jp  are the upper and lower 
boundaries of pj, and βj is a probability distribution defined 
as equation (12). 
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where ηm is the non-negative mutation index. A random 
number between 0 and 1 also needs to be generated for 
mutation. Polynomial mutation differs from a uniform 
mutation in that it leads to a slight perturbation to prevent 
one from premature convergence. The probability of 
creating an offspring identical to the parents should be 
higher than that of non-identical one. As the generation 
update proceeds, the probability of creating an offspring 
closer to the parents gets higher and higher. The polynomial 
probability distribution is listed in equation (13). 

( ) 0.5(1 )(1 ) .m
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4 Particle swarm optimisation (PSO) 

In an N-Dimensional search space, PSO can be introduced 
to solve a multi-dimensional optimisation problem. All 
particles travel through a search space to reach an optimal 
solution by gradually communicating and sharing 
information with the neighbours. Define the position and 
velocity vectors of the ith particle of the swarm as Xi = (Xi1, 

Xi2, …, Xid) and Vi = (Vi1, Vi2, …, Vid). The objective 
function encompasses the local best fitness position for each 
particle and global best fitness position across the entire 
swarm at each iteration. At cycle k, vectors of position, 
velocity, local best location reached by particle i, global best 
location reached by other neighbours are denoted as ,k

iX  
,k

iV  besti ,
kP  besti ,

kG  respectively. The position and velocity of 
each particle in the subsequent iteration will be updated by 
equations (14) and (15) 
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where w1 and w2 are two positive weights referred to as the 
cognitive parameter and social parameter, respectively. The 
former pulls each particle towards local best position while 
the latter pushes the particle towards the global best 
position. rand1 and rand2 are two uniformly distributed 
random variables between an interval [0,1]. The fitness in 
evolution computing is evaluated by the objective function 
(3), which is the sum of multilevel discrete entropies on a 
basis of occurrence of each intensity level corresponding to 
each pixel. 

At each cycle, the global best position is updated among 
the entire swarm. Implicit interaction among particles is 
adopted in the PSO scheme to update local and global 
information. Thus the velocity and position of particles keep 
updating each time. The process continues step by step until 
a stagnation condition is met when an objective function 
reaches maxima. Sometimes, it is necessary to maintain the 
particle population in a swarm at a certain amount, thus the 
upper and lower bounds should be added. For this reason,  
a swarm with a very limited population should be deleted. 
However, it is possible that the particle travels at high 
velocity, which results in the velocity explosion of the 
particle. Thus DPSO is thus introduced with a constriction 
factor (λ) to limit the velocity which leads to the sub-
optimal problem formulated as equations (16) and (17). 
Assumptions have been made in DPSO. The lifespan of 
swarm is subject to either extension or reduction when more 
or less fitness solutions could be located. The lifespan of 
swarm also simulates the natural survival case that is 
associated with the actual chance of producing offspring. 
Since DPSO has one parameter exclusively, it is less 
difficult to control than the PSO. DPSO also enhances the 
population diversity. 

1
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5 Case studies on multilevel thresholding 

Both GAs and PSO are applied to multilevel thresholding of 
a set of true colour images. Comparisons of performance are 
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necessary for potential real-time processing. Both 
qualitative and quantitative analyses will be conducted. 
Without loss of generality, four types of true colour images 
are chosen including the low dynamic range still image, 
high dynamic range still image, low dynamic range kinetic 
image, and high dynamic range kinetic image. The kinetic 
image simply refers to the one generated by the fluctuation 
of attenuation caused by motion. A still image does not 
involve physical motion. A kinetic image involves physical 
movement of objects caused by the relative motion. 
Multilevel thresholding is conducted for each of the three 
primary colour components (red, green, blue). The additive 
outcome of three primary colour outputs after multilevel 
thresholding will be demonstrated for comparative study. In 
order to evaluate the impact of multilevel thresholding using 
real-coded GAs and DPSO, qualitative comparisons among 
all four sets of images selected will be made in this session. 
The corresponding quantitative study will be conducted in 
next session using a set of well-defined metrics. 

5.1 Multiple level segmentation using real-coded gas 

In Figures 1–4, real-coded GAs multilevel thresholding in 
terms of the low dynamic range still image, high dynamic 
range still image, low dynamic range kinetic image, and 
high dynamic range kinetic images are shown. The source 
images and additive outcomes based on two-level 
thresholding are listed on top-right, while additive outcomes 
based on three-level thresholding and five-level 
thresholding are listed on the bottom-left and bottom-right. 
It shows that the real-coded GAs can be well performed for 
multilevel thresholding. 

Figure 1 Thresholding of low dynamic range still image  
(real-coded GAs) (see online version for colours) 

 

Additive outcomes generated from lower level thresholding 
(2, 3) could barely reflect all detail features within a digital 
image (e.g., corner, edge, curve, boundary, connectivity). 
Higher level thresholding (5) produces better outcomes but 
information loss still exists. In general, except for special 
colour distortion cases, additive outcomes generated from 
multilevel thresholding give rise to a broader dynamic range 

and larger contrast than those of source images. Lower level 
thresholding could, however, produces sharper images than 
higher level thresholding. 

Figure 2 Thresholding of high dynamic range still image  
(real-coded GAs) (see online version for colours) 

 

Figure 3 Thresholding of low dynamic range kinetic image 
(real-coded GAs) (see online version for colours) 

 

Figure 4 Thresholding of high dynamic range kinetic image 
(real-coded GAs) (see online version for colours) 
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5.2 Multilevel segmentation using DPSO 

DPSO could also be used for multilevel thresholding and 
similar comparisons should be made. DPSO enhances the 
population diversity which has only one control parameter 
to adjust. In Figures 5–8, DPSO multilevel thresholding in 
terms of the low dynamic range still image, high dynamic 
range still image, low dynamic range kinetic image, and 
high dynamic range kinetic image are shown. The source 
images and additive outcomes based on two-level 
thresholding are listed on top-right, while additive outcomes 
based on three-level thresholding and five-level 
thresholding are listed on the bottom-left and bottom-right. 
It manifests that DPSO generally surpasses GAs on 
multilevel thresholding. The additive outcomes based on 
lower level thresholding (2, 3) barely reflect all detail 
features. Higher level thresholding (5) gives rise to 
significant improvement but information loss still exists. 

Figure 5 Thresholding of low dynamic range still image (DPSO) 
(see online version for colours) 

 

Figure 6 Thresholding of high dynamic range still image 
(DPSO) (see online version for colours) 

 

Colour distortion seldom occurs when DPSO schemes are 
applied from visual appearance. It also shows that DPSO 
multilevel thresholding will produce outcomes with broader 

dynamic range and larger contrast than those of source 
images. At the same time, lower level thresholding always 
produces sharper images than higher level thresholding. 

Figure 7 Thresholding of low dynamic range kinetic image 
(DPSO) (see online version for colours) 

 

Figure 8 Thresholding of high dynamic range kinetic image 
(DPSO) (see online version for colours) 

 

5.3 Multiple level segmentation using OTSU’s 
method 

GAs and PSO are widely recognised to represent two best 
multilevel thresholding approaches by far, which is, in fact, 
the scope of this research paper. GAs and PSO produce 
much better outcomes than all those classical approaches. 
Here the fundamental Otsu’s thresholding has been selected 
as a typical example for multilevel thresholding. The 
simulation results of Otsu’s multilevel thresholding for the 
low dynamic range still image and low dynamic range 
kinetic image are shown in Figures 9 and 10. The source 
images and additive outcomes based on two-level 
thresholding are listed on top-right, while additive outcomes 
based on three-level thresholding and five-level 
thresholding are listed on the bottom-left and bottom-right. 
The visual appeal in each multilevel case already shows that 
severe inconsistency in pixels does exist. The strength of the 
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classical Otsu’s method actually lies in not multilevel 
thresholding but bi-level thresholding. For multilevel cases 
(e.g., 3, 4, 5, 6, …), Otsu’s search-based optimisation 
(exhaustive search) is time-consuming. Also for multilevel 
cases, it barely guarantees global optimal results because its 
role is limited to local optimisation. A quantitative approach 
is even not necessary at all to compare Otsu with intelligent 
approaches (GAs or PSO), because the qualitative approach 
is already quite enough. 

Figure 9 Thresholding of low dynamic range still image (Otsu’s 
thresholding method) (see online version for colours) 

 

Figure 10 Thresholding of low dynamic range kinetic image 
(Otsu’s thresholding method) (see online version  
for colours) 

 

Comparing results generated from GAs and DPSO, there are 
quite some similarities. For instance, the outcomes from 
lower level thresholding can hardly manifest all important 
features (e.g., corner, edge, curve, boundary, connectivity). 
Higher level thresholding results in much better outcomes 
despite the fact that it still shows information loss. In the 
meanwhile, multilevel thresholding outcomes cover broader 
dynamic range and larger contrast. In particular, lower  
level thresholding generally produces sharper images with 
higher dynamic range than higher level thresholding. On the 
other hand, mismatches exist between outcomes from two 

schemes of GAs and PSO. GAs based multilevel 
thresholding generates colour distortion in several cases 
while colour distortion almost never occurs when DPSO 
based multilevel thresholding is applied. Even though there 
are numerous minor differences between the segmented 
images from GAs and DPSO, it is not entirely convincing to 
claim which one is the best scheme based on the qualitative 
analysis exclusively. Therefore, it is necessary to conduct 
quantitative analysis in order to figure out the best choice 
for potential real-time processing of complex true colour 
images. 

6 Quantitative comparisons 

In most cases, the qualitative analysis could be far from 
enough to completely characterise the merits and drawbacks 
of GAs and PSO based multilevel thresholding. Thus 
diversified metrics are introduced together for further 
quantitative analysis, including discrete entropy, discrete 
energy, mutual information, dissimilarity, homogeneity, 
correlation, contrast, and dynamic range. To depict the 
colour balance of three specific channels (red, green, blue) 
based on outcomes of multilevel thresholding via GAs and 
PSO, each of three colour channels is subject to quantitative 
analysis individually similar to the grey scale digital images, 
using the occurrence frequency of pixel counts from each of 
the 256 intensity levels. 

6.1 Discrete entropy 

The discrete entropy represents the average amount of 
information conveyed from each individual image. It is 
defined as the sum of products of the probability of 
outcomes and logarithm of the inverse of the probability 
(18), taking into account all possible outcomes in the event 
{x1, x2, …, xk}, where k is a count of intensity levels, p(i) is 
the probability distribution. 

2 2
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6.2 Discrete energy 

The discrete energy is also related to randomness which 
shows how the intensity level of each primary colour 
channel is distributed which are defined as equation (19), 
where E(x) refers to the discrete energy with 256 bins and 
p(i) refers to the probability distribution function for each 
channel (R, G, B) on a basis of the histogram counts. 
Segmentation itself involves energy minimisation process. 
For an arbitrary image with constant intensity, the discrete 
energy reaches the maximum value of one. The larger 
energy amount corresponds to a lower total number of 
intensity levels while the smaller one is corresponding to a 
higher total number of intensity levels. 
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6.3 Mutual information 

Mutual information is a symmetric function that is 
formulated as equation (20), where I(X; Y) represents the 
mutual information; H(X) and H(X|Y) are the entropy and 
conditional entropy values. It is interpreted as the 
information that Y can tell about X is equal to the 
uncertainty reduction of X due to the existence of Y. Zero 
mutual information means two images are independent. 

2
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6.4 Dissimilarity 

Dissimilarity counts on local distance representation which 
is expressed as equation (21). It is described as the distance 
between two pixels in the cooccurrence matrix, where  
g(i, j) is an element in the matrix at the coordinates i and j; 
M and N show the total numbers of pixels in the row and 
column of the digital image. 
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6.5 Homogeneity 

Homogeneity is a direct measure of local variations which is 
formulated as equation (22). Lower values reflect more 
structural variations. Higher values of homogeneity reflect 
less structural variations. 
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6.6 Correlation 

Correlation is used to analyse a linear dependency of 
intensity levels of neighbouring pixels which is defined as 
equations (23) and (24). In fact, it indicates the amount of 
local variations over an entire digital image being analysed. 
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where i and j are coordinates of the cooccurrence matrix; µi 
and σi are the horizontal mean and variance while µj and σj 
are the vertical mean and variance. 

6.7 Contrast 

Contrast is defined to measure variations of the intensity 
distribution in each colour channel which is formulated  

as equation (25), where gAVG is the average intensity.  
The contrast is relevant to the diverse information  
content of objects that are visually distinguished from  
each other. It clarifies the intensity differences  
between individual features and background within the 
same scope. 
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6.8 Dynamic range 

Definitions of dynamic range vary across diverse contexts. 
In regard to real-world scenes, it is referred to as the 
contrast ratio of the intensity values between the brightest 
region and darkest region. Sometimes, it can be also 
interpreted as the total number of distinctive pixels being 
covered by a digital image in the spatial domain. When the 
light intensity range is described by powers of two (log2), it 
will lead to measuring unit (f-stop) in the dynamic range. 
On the other hand, considering great variations, the dynamic 
range can also be formulated on a decade logarithmic scale 
(log10). There is no essential difference between definitions 
from the analysis point of view. In this paper, dynamic 
range is defined as the ratio of the largest measurable 
intensity level (pixel saturation) to smallest detectable 
intensity level (read-out noise) within the individual image, 
using binary logarithmic (log2) scale. It is simply 
formulated as equation (26), where Isat refers to the 
saturation intensity and Imin refers to the dimmest non-zero 
detectable intensity. 

( )2 sat minlog / .DR I I=  (26) 

The RGB true colour model is efficient in producing diverse 
colours. The HSI colour model (hue, saturation, intensity) is 
able to decouple the intensity and colour information 
instead, such that the intensity component is independent of 
the colour components of hue and saturation. RGB and HSI 
models are interchangeable. For an image with RGB colour 
format, the corresponding hue, saturation and intensity 
components in the HSI space are expressed as equations 
(27)–(29). An exception in equation (27) is to use (360°–H) 
to substitute H when B > G. Here, the intensity is applied to 
compute the dynamic range. 
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( ) / 3.I R G B= + +  (29) 

Based on four sets of digital images being selected, 
comprehensive quantitative comparisons will be made. 
Tables 1–4 are placed in an order of the low dynamic range 
still image, high dynamic range still image, low dynamic 
range kinetic image, and high dynamic range kinetic image, 
respectively. The quantitative metrics are listed with respect 
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to the source images and the addictive outcomes at two-, 
three-, and five-level thresholding via GAs and PSO. 

Table 1 Metrics of low dynamic range still image 

Metrics: 
R/G/B 

Source 
image 

GA 
2-Level 

GA 
3-Level 

GA 
5-Level 

DPSO 
2-Level 

DPSO
3-Level

DPSO
5-Level

Discrete 
entropy 

4.9149 3.6526 3.8748 4.4765 1.7454 1.9890 3.6285

6.7515 5.2097 5.9188 6.6497 2.3765 2.4412 6.3212

6.9265 5.2155 6.1515 7.1592 2.1826 4.4814 7.3468

Discrete 
energy 

0.0505 0.2452 0.1851 0.1022 0.5131 0.4047 0.2429

0.0104 0.0901 0.0496 0.0145 0.4955 0.3556 0.0298

0.0095 0.1553 0.0318 0.0131 0.5115 0.2525 0.0094

Mutual  
INFO 

 1.2623 1.0401 0.4384 3.1695 2.9258 1.2863

 1.5418 0.8327 0.1018 4.3750 4.3103 0.4303

 1.7111 0.7751 0.2327 4.7439 2.4451 0.4203

Dissimilarity 0.0462 0.1284 0.1276 0.1005 0.0061 0.0021 0.0960

0.0948 0.2277 0.2454 0.1994 0.0411 0.0312 0.1957

0.1062 0.2472 0.2579 0.2279 0.0812 0.1525 0.2489

Homogeneity 0.9769 0.9366 0.9366 0.9501 0.9970 0.9990 0.9524

0.9526 0.9003 0.8878 0.9058 0.9795 0.9844 0.9104

0.9469 0.8870 0.8774 0.8908 0.9594 0.9248 0.8808

Correlation 0.8927 0.5374 0.5497 0.6777 0.8801 0.9646 0.6832

0.9523 0.9067 0.9397 0.9433 0.9143 0.9398 0.9478

0.9439 0.5997 0.8707 0.9594 0.6808 0.9038 0.9382

Contrast 0.0466 0.1367 0.1318 0.1041 0.0061 0.0022 0.0998

0.0951 0.3703 0.3499 0.2547 0.0418 0.0312 0.2783

0.1065 0.3551 0.3215 0.2755 0.0812 0.1631 0.3012

Dynamic 
range 

2.5472 6.4757 5.5935 2.7564 8.8202 7.0112 6.0321

Based on data of quantitative information metrics, the 
source images always possess largest discrete entropy, 
smallest discrete energy, highest correlation, and lowest 
contrast as well as shortest dynamic range. At each colour 
channel, it shows that the intensity levels of source images 
are more smoothly and evenly distributed than those of all 
thresholded images. Multilevel thresholding broadens 
dynamic range, reduces correlation, and enhances the 
contrast of digital images but the information loss (entropy, 
energy) occurs. Low-level segmentation suffers from most 
significant information loss with the lowest correlation, but 
it generates maximal expansion of dynamic range and 
contrast which is in favour of visual perception. Both 
dissimilarity and homogeneity show similar attributes where 
source images contain the largest homogeneity but smallest 
dissimilarity. The thresholding level itself takes a trivial role 
in both homogeneity and dissimilarity. The uncertainty 
reductions from two-, three-, and five-level thresholding 
additive outcomes are also computed and compared with 
source images. The higher the level of thresholding is, the 
smaller the mutual information is. At each thresholding 
level, the resulting mutual information via GAs is less  
than that via DPSO. It is shown that higher level 
thresholding has a relatively smaller dependency on the 

source image than lower level thresholding. In general, 
outcomes from DPSO cover greater dynamic range and 
higher contrast than those from GAs regardless of the actual 
thresholding level in all four cases. DPSO also produces 
better colour balance at the same time. Thus, DPSO is more 
suitable than GAs to show information content, to expand 
dynamic range, and to avoid colour distortion in real-time 
processing. 

Table 2 Metrics of high dynamic range still image 

Metrics: 
R/G/B 

Source 
image

GA 
2-Level

GA 
3-Level 

GA 
5-Level 

DPSO 
2-Level 

DPSO
3-Level

DPSO
5-Level

Discrete 
entropy 

7.6027 6.3130 7.0613 7.4881 5.9827 6.7127 7.4360

7.5200 6.2654 7.0454 7.4712 5.8911 6.4921 7.2723

7.5417 5.8735 6.8370 7.4269 5.1534 6.6570 7.4143

Discrete 
energy 

0.0059 0.0298 0.0133 0.0067 0.0398 0.0176 0.0073

0.0063 0.0279 0.0106 0.0065 0.0301 0.0187 0.0086

0.0063 0.0731 0.0242 0.0075 0.1531 0.0215 0.0077

Mutual INFO  1.2897 0.5414 0.1146 1.6200 0.8900 0.1667

 1.2546 0.4746 0.0488 1.6289 1.0279 0.2476

 1.6681 0.7047 0.1148 2.3882 0.8847 0.1273

Dissimilarity 0.4650 0.6869 0.6776 0.5358 0.3725 0.5656 0.5245

0.4633 0.7011 0.6721 0.5372 0.4034 0.6576 0.5152

0.4620 0.6479 0.6582 0.5475 0.3077 0.4828 0.5360

Homogeneity 0.7794 0.7427 0.7124 0.7529 0.8390 0.7542 0.7548

0.7802 0.7413 0.7175 0.7533 0.8287 0.7121 0.7586

0.7802 0.7525 0.7160 0.7464 0.8525 0.7921 0.7486

Correlation 0.8472 0.7443 0.7667 0.8184 0.7787 0.7861 0.8203

0.8336 0.7393 0.7649 0.8158 0.7431 0.7723 0.8208

0.8544 0.7192 0.7620 0.8138 0.8134 0.8247 0.8258

Contrast 0.586 1.6015 1.1990 0.7475 0.6255 0.9392 0.6969

0.5838 1.6822 1.2201 0.7590 0.7083 1.0696 0.6783

0.5756 1.4527 1.1164 0.7515 0.3712 0.8205 0.7032

Dynamic 
range 

8.5793 9.5603 9.3923 8.9658 9.5793 9.5661 9.2360

Table 3 Metrics of low dynamic range kinetic image 

Metrics: 
R/G/B 

Source 
image

GA 
2-Level 

GA 
3-Level 

GA 
5-Level 

DPSO 
2-Level

DPSO
3-Level

DPSO
5-Level

Discrete 
entropy 

6.1059 3.2676 4.4352 5.3057 1.9963 2.5464 3.3711

5.7784 3.3688 4.2705 4.8143 2.8315 3.2157 3.4277

5.9951 3.2253 4.3577 5.2966 1.9834 2.5347 3.5097

Discrete 
energy 

0.0170 0.2856 0.1689 0.0825 0.5740 0.4408 0.2756

0.0208 0.2696 0.1674 0.1007 0.2922 0.2830 0.2316

0.0175 0.2907 0.1726 0.0825 0.5808 0.4480 0.2674

Mutual  
INFO 

 2.8383 1.6707 0.8002 4.1096 3.5595 2.7347

 2.4096 1.5079 0.9641 2.9468 2.5627 3.3507

 2.7698 1.6374 0.6985 4.0118 3.4604 2.4855

Dissimilarity 0.0322 0.1461 0.1694 0.0936 0.0586 0.0789 0.0455

0.0335 0.1738 0.2019 0.089 0.0385 0.0612 0.0092

0.0320 0.1530 0.1756 0.0991 0.0500 0.0688 0.054 
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Table 3 Metrics of low dynamic range kinetic image 
(continued) 

Metrics: 
R/G/B 

Source 
image 

GA 
2-Level 

GA 
3-Level

GA 
5-Level 

DPSO 
2-Level 

DPSO
3-Level

DPSO
5-Level

Homogeneity 0.9839 0.9469 0.9338 0.9553 0.9707 0.9606 0.9773

0.9833 0.9403 0.9238 0.9583 0.9812 0.9695 0.9954

0.984 0.9466 0.9342 0.9528 0.9750 0.9656 0.9730

Correlation 0.9660 0.9213 0.9329 0.9549 0.9371 0.9377 0.9587

0.9327 0.9076 0.9125 0.9253 0.9174 0.9227 0.9284

0.9654 0.9141 0.9232 0.9442 0.9266 0.9293 0.9542

Contrast 0.0322 0.3684 0.3689 0.1148 0.0589 0.0789 0.0455

0.0335 0.4875 0.4747 0.1173 0.0431 0.0621 0.0092

0.0320 0.4172 0.4192 0.1231 0.0502 0.0689 0.0541

Dynamic 
range 

0.9366 3.9019 1.2688 1.1242 9.3443 9.3080 9.2021

Table 4 Metrics of high dynamic range kinetic image 

Metrics: 
R/G/B 

Source  
image 

GA 
2-Level 

GA 
3-Level

GA 
5-Level 

DPSO 
2-Level 

DPSO
3-Level

DPSO
5-Level

Discrete 
entropy 

7.6592 3.8207 4.5751 5.7938 3.8588 4.7088 6.3974

7.6884 3.3046 4.6226 5.8926 3.3065 4.5875 5.1918

7.6125 3.1308 4.7960 6.0123 3.5139 4.7629 6.3141

Discrete 
energy 

0.0054 0.3820 0.1222 0.0602 0.3531 0.1205 0.0360

0.0051 0.2699 0.1257 0.0790 0.2678 0.1248 0.0691

0.0057 0.3156 0.1381 0.0591 0.2657 0.1306 0.0390

Mutual 
INFO 

 3.8386 3.0841 1.8654 4.8004 2.9504 1.2619

 4.3838 3.0658 1.7958 4.3819 3.1009 2.4966

 4.4817 2.8165 1.6002 4.0987 2.8496 1.2985

Dissimilarity 0.1526 0.2086 0.1700 0.2008 0.1651 0.1994 0.2103

0.1522 0.1970 0.1744 0.2071 0.1891 0.2125 0.2600

0.1494 0.1557 0.1635 0.2215 0.1840 0.1820 0.2033

Homogeneity 0.9249 0.9173 0.9239 0.9026 0.9399 0.9103 0.9036

0.9250 0.9230 0.9226 0.8998 0.9320 0.9039 0.8796

0.9265 0.9356 0.9265 0.8926 0.9310 0.9177 0.9075

Correlation 0.9717 0.9022 0.9442 0.9624 0.9357 0.9381 0.9518

0.9716 0.9066 0.9450 0.9603 0.9308 0.9390 0.9406

0.9754 0.9515 0.9530 0.9627 0.9538 0.9561 0.9595

Contrast 0.1643 0.4316 0.2592 0.2308 0.4033 0.3001 0.2983

0.1640 0.4171 0.2726 0.2404 0.4732 0.3148 0.3568

0.1611 0.2927 0.2463 0.2547 0.4264 0.2697 0.2953

Dynamic 
range 

8.5793 9.2312 9.1649 8.9629 9.3264 9.1948 9.0279

7 Conclusions 

GAs and DPSO have been presented for digital image 
multilevel thresholding. By qualitative analysis, both 
schemes could produce satisfactory outcomes from visual 
appeals which surpass the classical schemes significantly. 
However, qualitative analysis is not quite enough for detail 
comparisons between 2 leading schemes of GAs and PSO.  
 

Since quantitative analysis will generate more accurate 
analytical results, typical quantitative metrics of the discrete 
entropy, discrete energy, mutual information, dissimilarity, 
homogeneity, correlation, contrast and dynamic range are 
introduced to interpret outcomes from multiple points of 
view. It has been observed that the DPSO scheme slightly 
outperforms the GAs which conveys more information 
content, generates a broader dynamic range, and produces 
better colour balance with less occurrence of severe colour 
distortion. The segmented images at various individual 
thresholding levels will produce broader dynamic range 
scenes than those of source images. The segmented images 
also show higher contrast with less information content, 
especially at the low level. It is demonstrated clearly that 
evolutionary intelligence can be successfully implemented 
on nonlinear optimisation problems of real-time multilevel 
thresholding. 

8 Future work 

Multilevel thresholding represents a challenging practice  
of real-world problem solving involving numerous 
optimisation approaches. The optimal criteria vary across 
methods which are variance-based, gradient-based, Hessian-
based, moment-based, cross-entropy-based, entropy-based, 
and so on. Basically, the methodologies can be primarily 
categorised into either classical approaches or intelligent 
approaches. A fundamental thresholding approach (i.e., 
classical Otsu’s method) has been initially proposed for  
bi-level thresholding rather than multilevel thresholding. 
For multilevel thresholding, classical approaches tend to be 
very time consuming via exhaustive search which can 
barely guarantee global optimal results because the  
role is limited to local optimisation. Accordingly, severe 
inconsistency in image pixels does exist even from visual 
appeals. In general, qualitative analysis is already enough to 
make comparisons between classical approaches (e.g., Otsu, 
gradient descent, simulated annealing, moment preserving) 
and intelligent approaches (e.g., GAs, PSO, ACO) on 
multilevel thresholding. However, the quantitative approach 
turns out to be necessary to compare among all existing 
artificial intelligence (AI) based approaches (e.g., genetic 
algorithms, genetic programming, evolution strategies, PSO, 
ACO, bacteria foraging algorithms, artificial bees algorithm, 
invasive weed optimisation, memetic search, differential 
evolution search, artificial immune systems, stochastic 
tunnelling, Tabu Search, gravitational search algorithm), 
because qualitative analysis is no longer accurate and 
effective to observe the very slight differences among  
all AI approaches. At the same time, sub-optimality  
could be achieved using intelligent approaches, which gives 
rise to potential real-time applications. A more 
comprehensive overview to compare diversified multilevel 
thresholding approaches will be conducted in the near 
future. Especially, the quantitative approach will be used to 
determine the potential best multilevel thresholding 
approach in real time. 
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