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Abstract: This paper presents a methodology for parameter estimation of photovoltaic (PV) 
modules based on global search and optimisation algorithms. A nonlinear optimisation problem 
is formulated to search the best set of equivalent circuit parameters which minimises a certain 
objective function. The objective function measures the discrepancy between computed and 
targeted performance. The proposed technique is flexible on the source of the targeted 
performance, which could be datasheet information or experimental measurements. The method 
is also flexible on the nature and number of sought parameters according to the equivalent circuit 
representation and available information. The nonlinear optimisation problem is solved using 
three different global search routines, namely, genetic algorithms (GA), particle swarm 
optimisation (PSO) and bacterial foraging (BF). Effectiveness of the proposed methodology is 
shown through three case studies on different PV modules of various ratings and manufacturers. 
The extracted parameters could accurately simulate the performance of PV modules under 
normal operation as well as low irradiance and partial shading conditions. 
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1 Introduction 

Classical power sources depending on fossil fuels emit 
greenhouse gases and add to the world’s global warming 
and environmental pollution problems. Renewable energies, 
which have recently received increasing research attention, 
provide green, free and sustainable sources. Motivated by 
governmental incentives, solar photovoltaic (PV) panels are 
rapidly penetrating electrical power systems worldwide. 
Large solar farms can produce power in several megawatts, 
whereas small residential rooftop installations have ratings 
in the range of few kilowatts. In both cases, accurate 
modelling is imperative for performance computation, 

operation scheme design and maximum power point 
tracking (MPPT) control. 

Precise estimation of the equivalent circuit parameters  
is inevitable for analytical modelling of any electrical 
system or equipment. The PV module is no exception. 
Typically, equivalent circuit parameters of many electrical 
systems are computed based on the experimental  
results of prototype laboratory testing. Nevertheless, some 
publications available in the literature consider extracting 
PV module parameters from datasheet information supplied 
by the manufacturer. Analytical methods are proposed to 
express equivalent circuit parameters in terms of 
performance characteristics of the PV module (Farivar and 
Asaei, 2011; Chatterjee et al., 2011; Lo Brano et al., 2010; 
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Ahmad et al., 2012; Cubas et al., 2013; Siddique et al., 
2013; Sera et al., 2007; Ishaque et al., 2011; Chenni et al., 
2007; Chan and Phang, 1987; Maoucha et al., 2012; Phang 
et al., 1984; Jia et al., 1995; Ortiz-Conde et al., 2006;  
de Blas et al., 2002; Bouzidi et al., 2007; Chan et al.,  
1986; Hejri et al., 2016). Accordingly, equivalent circuit 
parameters are estimated if module performance is known 
under some operating conditions with some simplifying 
assumptions. Such performance could be obtained from the 
manufacturer supplied datasheet of the module (Farivar and 
Asaei, 2011; Chatterjee et al., 2011; Lo Brano et al., 2010; 
Ahmad et al., 2012; Cubas et al., 2013; Siddique et al., 
2013; Sera et al., 2007; Ishaque et al., 2011; Chenni et al., 
2007) or from experimental measurements (Chenni et al., 
2007; Chan and Phang, 1987; Maoucha et al., 2012; Phang 
et al., 1984; Jia et al., 1995; Ortiz-Conde et al., 2006;  
de Blas et al., 2002; Bouzidi et al., 2007; Chan et al., 1986). 
The mathematical expressions of module parameters are 
usually nonlinear and require iterative numerical solutions 
(Chatterjee et al., 2011; Lo Brano et al., 2010; Siddique  
et al., 2013; Sera et al., 2007; Ishaque et al., 2011; Chenni  
et al., 2007; Chan and Phang, 1987; Maoucha et al., 2012; 
Ortiz-Conde et al., 2006; Bouzidi et al., 2007); however, 
certain assumptions can enable the separation of variables 
and allow direct solution to identify the parameters (Farivar 
and Asaei, 2011; Ahmad et al., 2012; Cubas et al., 2013; 
Phang et al., 1984; Jia et al., 1995; de Blas et al., 2002; 
Chan et al., 1986). Although most of the work reported in 
literature considers the single-diode model of PV cells, a 
few publications are concerned with parameter estimation of 
the double-diode equivalent circuit (Ishaque et al., 2011; 
Chan and Phang, 1987; Maoucha et al., 2012). In Hejri et al. 
(2016), open-circuit voltage, short-circuit current and 
voltage and current at maximum power point are used to 
provide an initial point that guarantees convergence  
of analytical estimation routine. The parameters of a  
single-diode five-parameter model are accurately obtained 
based on analytical approximation of the model equations. 

Another method of parameter estimation of PV modules 
depends on fitting measured and computed performance 
with minimal error (Chan et al., 1986; Hejri et al., 2016; 
Ikegami et al., 2001; Haouari-Merbah et al., 2005; Chegaar 
et al., 2006). Module performance is measured in the 
laboratory and then model parameters that get computed 
characteristics as close as possible to measurements are 
computed. Mathematical techniques of curve fitting vary 
between least-square method over the whole operating 
range (Ikegami et al., 2001), voltage fitting near open-
circuit and current fitting near short-circuit (Haouari-
Merbah et al., 2005) and auxiliary function fitting (Chegaar 
et al., 2006). 

Biologically-inspired optimisation algorithms are 
exploited to estimate PV module parameters via minimising 
certain objective functions (Ye et al., 2009; Sandrolini et al., 
2010; Zagrouba et al., 2010; Krishnakumar et al., 2013; 
Ishaque and Salam, 2011; da Costa et al., 2010; Yeh et al., 
2017; Oliva et al., 2017; Awadallah and Venkatesh,  
2016; Awadallah, 2016; Chin et al., 2017). The targeted 

performance is obtained either through measurements (Ye et 
al., 2009; Sandrolini et al., 2010; Zagrouba et al., 2010) or 
through datasheet information (Krishnakumar et al., 2013; 
Ishaque and Salam, 2011; da Costa et al., 2010). Particle 
swarm optimisation (PSO), genetic algorithms (GA), 
bacterial foraging (BF), artificial immune systems (AIS), 
and differential evolution (DE) routines are used to estimate 
parameters of the single- and double-diode models. In Ye  
et al. (2009), the discrepancy between measured and 
computed module current is used as an objective function to 
be minimised by PSO and GA. Statistical and cluster 
analyses are used with PSO to fit measured performance to 
that computed through the seven-parameter double-diode 
model of PV modules (Sandrolini et al., 2010). The 
difference between measured and computed current is 
minimised via GA to extract PV module parameters 
(Zagrouba et al., 2010). In Krishnakumar et al. (2013), an 
objective function based on the rate of change of module 
current with respect to its voltage, at maximum power point, 
is minimised using BF, GA, and AIS. Information about 
maximum power point is obtained from the manufacturer 
datasheet. A similar objective function is minimised by DE 
in Ishaque and Salam (2011). Mean square error comparing 
computed current and that supplied by the manufacturer 
datasheet is minimised by DE to estimate the single-diode 
model parameters (da Costa et al., 2010). An improved 
simplified PSO algorithm is employed to extract the 
parameters of both single- and double-diode models of PV 
cells (Yeh et al., 2017). In Oliva et al. (2017), the chaotic 
whale optimisation algorithm is used to estimate the 
mathematical model parameters of solar cells. The internal 
parameters of the optimisation algorithm are dynamically 
updated as iteration progresses, which help improve 
convergence speed and accuracy. 

Synergy between different optimisation algorithms can 
also enhance the performance; a PSO-guided BF routine can 
outperform both PSO and GA in extracting PV model 
parameters (Awadallah and Venkatesh, 2016). In addition, 
variations of algorithm parameters impact the convergence 
behaviour such that experimental numerical runs may be 
required before the best combination is reached. In 
Awadallah (2016), various combinations of BF algorithm 
parameters are experimented before the best fit for PV 
parameter estimation problems is realised. On the other 
hand, analytical and optimisation methods could be 
combined yielding a hybrid parameter estimation routine 
which can improve convergence behaviour and modelling 
accuracy (Chin et al., 2017). Moreover, an innovative 
estimation technique based on the learning, nonlinear 
mapping, and pattern recognition capabilities of artificial 
intelligence tools is presented in Salem and Awadallah 
(2014). Intelligent modules based on artificial neural 
networks and adaptive neuro-fuzzy inference systems are 
trained using data generated by the mathematical model to 
identify the best parameter set of PV cells. 

This paper presents a technique based on optimisation 
routines to estimate the equivalent-circuit parameters of PV 
modules. The optimisation algorithm minimises an 
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objective function expressing the relative absolute error 
(RAE) between targeted and computed performance. The 
targeted performance could be obtained through the 
datasheet supplied by the manufacturer or through 
experimental measurements. When datasheet information is 
used, targeted performance represents the open-circuit 
voltage, short-circuit current, maximum power and voltage 
at maximum power, all under standard test conditions 
(STC). On the other hand, open-circuit voltages and short-
circuit currents at different values of solar irradiance and 
cell temperature are used as targeted performance obtained 
via prototype laboratory testing. Three optimisation 
algorithms are used to solve the present problem, namely, 
GA, PSO and BF. The technique is tested on three PV 
modules with different ratings and manufacturers. The 
viability is verified by the good matching between measured 
performance and that computed through the estimated 
parameters. Extracted parameters could accurately represent 
system performance under normal operation as well as low 
irradiance and partial shading conditions. 

The proposed technique of PV parameter estimation has 
various advantages not attributed altogether to any of the 
methods available in the literature. Firstly, the targeted 
performance spans over the whole range of operation from 
open-circuit to short-circuit points. Consequently, the 
obtained parameters are more representative of module 
behaviour under different conditions. Normally, the usage 
of datasheet characteristics at STC eliminates the need to 
perform prototype laboratory testing. However, for aged PV 
modules, whose performance deteriorates from that of the 
datasheet or in case datasheet is not available, experimental 
testing would yield more realistic parameters. Secondly,  
the proposed method avoids complicated mathematical 
derivations, inaccurate iterative solutions to nonlinear 
equations and misleading approximating assumptions. In 
addition, information on the derivatives of the objective 
function is not needed. Thirdly, the objective function 
formulation is simple, straightforward and meaningful 
where a wide variety of optimisation algorithms can be 
employed. Fourthly, the proposed technique can estimate a 
selected set of parameters of the single- or double-diode 
models of PV modules based on information availability 
and user preference. 

2 PV modelling and problem statement 

As shown in Figure 1(a), a PV cell can be modelled with a 
current source in parallel to a diode, a shunt resistance to 
account for leakage current and a series resistance to 
represent losses related to load current (Farivar and Asaei, 
2011; Chatterjee et al., 2011; Lo Brano et al., 2010; Ahmad 
et al., 2012; Cubas et al., 2013; Siddique et al., 2013). 
Accordingly, the cell current is given as 
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where Ic is the cell current, A, Iph is the photocurrent, A, Ios 
is the reverse saturation current of the diode, A, q is the 
electron charge, C, A is the diode ideality factor, K is 
Boltzmann constant, J/°K, T is the cell temperature, °K, Vc 
is the cell voltage, V, Rs is the series resistance, Ohm and 
Rsh is the shunt resistance, Ohm. The photocurrent depends 
on the solar irradiance and cell temperature and is given as 

ph n i rI λ I k T T  (2) 

where λ is the solar irradiance, kW/m2, In is the nominal 
short-circuit current at STC (1000 W/m2 irradiance, 25 °C 
temperature and 1.5 air mass), ki is the short-circuit current 
temperature coefficient, A/°K and Tr is the reference 
temperature, °K. Meanwhile, the reverse saturation current 
of the diode varies with temperature and is given as 
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where Ior is the reverse saturation current of the diode at 
reference temperature and irradiance, A, Eg is the band gap 
energy of the cell material, J/C. When PV cells are 
connected in series and parallel forming a PV array in order 
to raise the level of output voltage and current, Figure 1(b), 
the output current is expressed as 
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where Np and Ns are the number of cells in parallel and 
series, respectively. 

Equations (1) through (3) describe the performance of a 
PV cell. The model correlates the output variables of the 
cell, Vc and Ic with the independent variables representing 
the environmental conditions, λ and T, through physical 
constants and system parameters. The Boltzmann constant 
(K), electron charge (q), band gap energy of the cell 
material (Eg) and reference temperature (Tr) are all 
constants. Whereas, series resistance (Rs), shunt resistance 
(Rsh), diode ideality factor (A), nominal short-circuit current 
(In), reverse saturation current at reference temperature  
and irradiance (Ior) and short-circuit current temperature 
coefficient (ki) are parameters of the PV cell. Numbers of 
series and parallel cells are also required to compute the 
performance of a PV array using equation (4). 

In the double-diode model of a PV cell, two diodes are 
in parallel with the photocurrent source as shown in  
Figure 2. The model is known to be more accurate than the 
single-diode model, especially at low irradiance levels. One 
diode represents the diffusion current in the p–n junction, 
whereas the other takes the space-charge recombination 
effect into account. Both single- and double-diode models 
are widely accepted to represent the behaviour of crystalline 
semiconductor PV cells. The output I-V characteristic 
equation of the double-diode model becomes 
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The reverse saturation currents of the two diodes are 
expressed in terms of their values at reference temperature 
and irradiance as (Ishaque et al., 2011; Chan and Phang, 
1987; Sandrolini et al., 2010) 
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Equations (5), (2), (6) and (7) represent the mathematical 
model based on the double-diode equivalent circuit. The 
model parameters are series resistance (Rs), shunt resistance 
(Rsh), ideality factors for both diodes (A1 and A2), nominal 
short-circuit current (In), reverse saturation current at 
reference temperature and irradiance for both diodes  
(Ior1 and Ior2) and short-circuit current temperature 
coefficient (ki). It is obvious that the second diode adds two 
parameters to the model. It should be mentioned that the 
manufacturer datasheet usually provides values for the 
nominal short-circuit current (In) and short-circuit current 
temperature coefficient (ki). 

Figure 1 Single-diode model of (a) PV cell and (b) PV array 

 
(a) 

 
(b) 

Figure 2 Double-diode model of a PV cell 

 

The objective of this research is to estimate the model 
parameters of PV modules by minimising the discrepancy 
between computed and targeted performance. In other 
words, a set of parameters, which yields computed 
performance as close as possible to targeted performance is 
sought. The targeted performance could be attained from the 
datasheet supplied by the manufacturer or measured in the 
laboratory. Targeted performance of the datasheet signifies 
four indices, i.e., the short-circuit current, open-circuit 
voltage, maximum power and voltage at maximum power, 
all at STC. Measurements of module output voltage and 
current could be also used as targeted performance. An 
acceptable set of parameters has to minimise the RAE that 
measures the discrepancy between computed and targeted 
performance. The RAE is expressed as 
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where XCi is the ith computed index, XTi is the ith targeted 
index and n is the number of performance indices. The RAE 
given in equation (8) is considered an objective function  
to be minimised via optimisation. The problem is 
independently solved by GA, PSO and BF algorithms. 

3 Optimisation routines 

3.1 Genetic algorithms 

The GA is a probabilistic random guided search technique 
inspired by the Darwinian theory of evolution, which 
employs the ‘survival of the fittest’ concept of natural 
biology (Goldberg, 1989; Deb, 2000; Deep et al., 2009). 
One distinct feature of GA is that the routine starts 
searching from a population of points, not a single point, 
with no need to have information about the derivatives of 
the objective function. The algorithm codes prospective 
solutions of the problem as a population of individual 
chromosomes composed of different genes. Each gene 
carries the value of one variable of the objective function. 
The population is randomly initialised and the individuals 
are evaluated based on the corresponding values of the 
objective function. Fit individuals are probabilistically 
copied to the ‘mating pool’, while weak individuals likely 
die as their probability of selection is small due to poor 
fitness. The natural genetic processes of crossover and 
mutation are then imitated in order to mate parents of the 
current generation, and produce the offspring of the new 
generation. 
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Crossover means random gene exchange between 
selected individuals. The process is usually carried out 
between two individuals of the current generation (parents) 
to yield two different individuals of the next generation 
(offspring). On the other hand, mutation is the random gene 
alteration which is a typical phenomenon in natural biology. 
Mutation means that one offspring might have a genetic 
characteristic that is not directly found in either parent. 
Mutation is performed in GA at a very little probability; yet, 
it helps the routine escape local minima. 

The routine continues till the termination criterion is 
satisfied, where the best individual of the last generation is 
taken as the solution of the problem. The termination 
condition could be stagnation of fitness value over certain 
number of generations, reaching runtime limit, obtaining 
desired fitness value, executing a preset number of 
generations or a combination of such criteria. Based  
on Darwin’s theory, the population evolves from one 
generation to the next as the best fitness improves. 

In spite of the remarkable robustness of GA in finding 
global optima, the slowness of operation could be a 
significant obstacle in some applications. However, GA has 
shown notable effectiveness in many types of optimisation 
problems. Coding of individual solutions has granted  
GA one more apparent plus, which is its adaptability to 
certain optimisation problems that could not be solved by 
classical or even some other evolutionary techniques.  
The sequentially applied genetic operations of selection, 
crossover and mutation attributed GA with the ability to 
escape local optima, besides the robustness of attaining 
global ones. 

3.2 Particle swarm optimisation 

The PSO, which is a member of the nature-inspired routines 
family, mimics the social behaviour of a swarm of particles 
(birds, insects, fish, etc.) seeking the richest food source in a 
large field (Kennedy and Eberhart, 1995; Eberhart and 
Kennedy, 1995; Mendes et al., 2004). Memories and 
communications between particles are employed to enhance 
search efficiency and robustness. The algorithm exploits a 
population of randomly generated potential solutions in 
order to detect the global minimum of a highly nonlinear 
multimodal objective function. The PSO is a derivative-free 
algorithm, which utilises cooperation, competition and 
experience of the swarm particles along with probabilistic 
transition rules of search. In summary, the natural intelligent 
behaviour of particle swarms is being copied accordingly to 
computer software in order to accomplish a complicated 
search mission for optimisation purposes. 

The algorithm starts with a randomly generated swarm 
of individual particles representing potential solutions to the 
optimisation problem. Each particle signifies a position  
in the search space at which the objective function is 
evaluated. The particles move in the search space affected 
by three factors, namely, the previous movement of the 
particle (inertia effect), the best position visited by the 
particle (personal best) and the best position of the whole 
swarm over the previous iterations (global best). The new 

velocities of the particles are probabilistically determined as 
given in equation (9), while the new positions are computed 
as shown in equation (10). One distinct feature of PSO, 
compared to other evolutionary techniques, is that it does 
not employ the ‘survival of the fittest’ concept as it does not 
implement a direct selection function. In other words, 
particles of low fitness can survive and probably visit any 
point in the search space. Particle velocity and position are 
updated as 

1k k k k k k
p gi i i iv wv P x P x  (9) 

1 1k k k
i i ix x v  (10) 

where 1k
iv  is the velocity of the ith particle at the (k + 1)th 

iteration, w is the inertia weighting factor, k
iv  is the velocity 

vector of the ith particle at the kth iteration,  and  are 
bounded positive uniformly distributed random numbers, 

k
pP  is the position vector of the personal best location at the 

kth iteration, k
ix  is the position vector of the ith particle at the 

kth iteration, k
gP  is the position vector of the global best 

location up to the kth iteration and 1k
ix  is the position vector 

of the ith particle at the (k + 1)th iteration. 
One advantage of PSO is the obvious ease of 

implementation. Once the particle positions and velocities 
are randomly initialised, equations (9) and (10) are used to 
iterate on the objective function till convergence. 

3.3 Bacterial foraging 

The BF optimisation algorithm is based on the foraging 
theory of the E. coli bacteria which comprises three main 
activities, namely, chemotaxis, reproduction and 
elimination-dispersal (Passino, 2002; Tang et al., 2006). 
Chemotaxis indicates the motion pattern of bacteria in the 
presence of chemical attractants and repellants. During a 
chemotactic step, a bacterium can either swim or tumble, 
where swimming means continuous movement in some 
direction and tumbling signifies random change of 
direction. Asexual reproduction of the E. coli bacteria 
happens under certain conditions when a bacterium 
elongates then splits from the middle into two identical 
individuals. Elimination-dispersal probabilistically takes 
place due to sudden environmental changes. The bacteria 
may die affected by noxious substances, while new bacteria 
can be randomly generated at different location. While 
foraging, the E. coli bacteria have a tendency of swarming 
through communication by chemicals. The foraging theory 
is based on maximising the energy gained per unit time. A 
bacterium is in continuous search of nutrient-rich media 
using its four-second memory to compute the nutrient 
gradient. 

A computer program, which imitates foraging  
activities of the E. coli bacteria can be used for optimising  
a multi-modal nonlinear function with no derivative 
information required. In the optimisation software, 
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chemotaxis is modelled via a step taken by the bacterium in 
a random direction as 

( )( 1, , ) ( , , ) ( )
( ) ( )

i i
T

iθ j k l θ j k l C i
i i

 (11) 

where θi(j + 1, k, l) is the position of the ith bacterium at the 
(j + 1)th chemotactic step, kth reproduction step and lth 
elimination-dispersal event, θi(j, k, l) is the position of the ith 
bacterium at the jth chemotactic step, kth reproduction step 
and lth elimination-dispersal event, C(i) is the step length of 
the ith bacterium and Δ(i) is a random vector in the search 
space. The swarming effect is modelled by adding a value, 
representing the cell-to-cell communication, to the objective 
function. Such value depends on the width and depth of the 
attractant and repellant chemicals released by one 
bacterium. 
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where Jcc(θ, P(j, k, l)) is the cell-to-cell effect to be added to 
the objective function of the bacterium θ, P(j, k, l) is  
the bacteria population at the jth chemotactic step, kth 
reproduction step and lth elimination-dispersal event, S is the 
population size, dattract and wattract are the depth and width of 
attractant chemical, p is dimension of the search space and 
hrepell and wrepell are the height and width of repellant 
chemical. 

At each reproduction step, the bacteria population is 
ranked based on the associated values of objective function. 
Assuming the number of reproduced bacteria to be Sr, the 
worst Sr bacteria are deleted from the population, whereas 
the best Sr bacteria are split in half at the same position. 
Such reproduction scenario assures fixed population size. 
The elimination-dispersal event takes place when Ned 
bacteria are randomly eliminated from the population with a 
probability of ped and an equal number of bacteria is 
dispersed at random positions of the search space. 

The BF algorithm is known for its robustness and 
effectiveness of optimising highly-nonlinear multi-modal 
objective functions. The algorithm has been successfully 
applied to many engineering optimisation problems. 

4 Results and case studies 

The proposed optimisation-based technique of parameter 
estimation is applied to three PV modules with different 
ratings and manufacturers. The three case studies aim at 
showing a comparison of the optimisation routines, ability 
to model PV modules under extreme operating conditions 
and adaptability to nature of targeted performance and 
number of sought parameters. The method is implemented 
in MATLAB platform. The objective function is coded as 

an m-file to minimise the error given in equation (8) based 
on a comparison between performance computed from the 
mathematical model of equations (1) through (7) and 
targeted performance. PSO and BF algorithms are also 
coded in m-files, whereas the GA toolbox of MATLAB is 
used to run GA. 

4.1 Case study 1: comparison of optimisation 
routines 

In this case study, the equivalent circuit parameters of sharp 
ND240QCJ solar module are estimated using the GA,  
PSO, and BF algorithms. Parameters of both single- and 
double-diode models are estimated based on datasheet 
information. The performance of optimisation algorithms is 
compared on the given nonlinear problem and the modelling 
accuracy of obtained parameters is investigated. The 
electrical characteristics of the PV module (Table A1) 
include the open-circuit voltage, Voc, short-circuit current, 
Isc, maximum power, Pmax and voltage at maximum power 
point, VMPP, under STC. Such four indices are used as the 
targeted performance of the module. The datasheet also 
gives values of the nominal short-circuit current (In)  
and short-circuit current temperature coefficient (ki). 
Accordingly, the missing parameters of the single-diode 
model are the series resistance (Rs), shunt resistance (Rsh), 
diode ideality factor (A) and reverse saturation current of  
the diode at reference temperature and irradiance (Ior). In 
addition to these four parameters, the double-diode model 
misses the ideality factor and reverse saturation current of 
the second diode, too. In other words, the search space is of 
four and six dimensions in case of single- and double-diode 
models, respectively. 

The objective function given in equation (8) is 
minimised independently using GA, PSO and BF; the 
optimisation results are given in Table 1. For fair 
comparison, all three algorithms are run for 300 iterations 
with a population of 40 individuals. The condition of 300 
iterations is met with BF through 25 chemotactic steps, four 
reproduction steps and three elimination-dispersal events. 
Every algorithm is run for ten times; the best result over the 
ten runs is shown in Table 1. The convergence behaviours 
of the three algorithms during the best run are compared in 
Figures 3 and 4 for parameter estimation of the single- and 
double-diode models, respectively. 

It appears from Table 1 that for both equivalent circuit 
models, the best objective function value is obtained 
through PSO and the fastest converging algorithm is also 
PSO. However, over the ten runs of each algorithm on 
single-diode model, the average convergence time in 
seconds is 14.88, 9.95 and 46.89 while the average objective 
function is 0.0073, 0.0032 and 0.0030 for GA, PSO and BF, 
respectively. The ten run averages on the double-diode 
model are 15.47, 11.11 and 53.49 sec. for the convergence 
time,\ and 0.0128, 0.0040,\ and 0.0028 for the objective 
function obtained via GA, PSO,\ and BF, respectively. It 
seems that the average objective function of BF is the best, 
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which indicates highest robustness. Otherwise, PSO always 
outperforms GA and BF on solving the current problem. 

Figure 3 Convergence behaviours of the optimisation algorithms 
on the single-diode mode (see online version for 
colours) 

 

Figure 4 Convergence behaviours of the optimisation algorithms 
on the double-diode mode (see online version for 
colours) 

 

 

The parameter sets in Table 1 are used to compute the 
performance characteristics of the PV module in order to 
compare to targeted values. The comparison is held in  
Table 2, where PSO computed performance appears to be 
almost always better than those of GA and BF. It should be 
noted that the objective function value of the double-diode 
model is always less than that of the single-diode model, 
whereas the convergence time is higher. Such observation is 
true for all three algorithms on the best case of the ten runs, 
Table 1. Apparently, the double-diode model is more 
precise in representing module performance at STC. 

The BF algorithm is distinctly slower than GA and PSO 
due to its heavy computational burden per iteration. 
However, PSO is the fastest since it has the least 
computational load per iteration. One other reason behind 
the high convergence speed of PSO is the possibility  
of vectorising some procedural steps over the whole 
population. On the contrary, computations of both GA and 
BF are to be performed over a single individual or a pair of 
individuals at most. One observation from Figures 3 and 4 is 
that the objective function value either stagnates or 
decreases in case of GA and PSO, while it fluctuates with 
BF. The reason is that the BF algorithm has no inherent 
procedure that preserves the best objective function value 
while iterating. However, the global best in PSO and the 
elite strategy in GA maintain the best function value met so 
far at any iteration. Nevertheless, the iteration-wise best 
objective function value could be saved in BF along with its 
corresponding location, and the minimum could be taken as 
the optimisation solution. 

Experimental measurements are used to validate the 
parameters of the PV module. A variable resistor is used to 
load the PV module at different voltages from open-circuit 
to short-circuit. Voltage and current readings are recorded 
under two operating conditions at 970 W/m2 irradiance  
with 40°C temperature and at 800 W/m2 irradiance  
with 48°C temperature. Measurements are compared to 
performance computed through single- and double-diode 
models in Figures 5 and 6, respectively. The good matching 
between experimental and analytical results in Figures 5  
and 6, considering the various random and systematic  
errors associated with experimental work indicates the 
effectiveness of the proposed method. 

Table 1 Estimated parameters of the sharp ND240QCJ module 

Parameter 
Single-diode model  Double-diode model 

GA PSO BF GA PSO BF 

Objective function 0.0036 0.0017 0.0021  0.0028 0.0014 0.0017 
Convergence time, sec 13.82 9.512 46.316  14.93 10.753 50.27 
Rs, Ω 1.3487 1.2234 1.1598  1.0909 1.0225 1.0287 
Rsh, Ω 1037.9 1154 1386  797.68 1489.2 1364.4 
A1 1.0912 1.1259 1.1395  1.1408 1.176 1.1694 
Ior1, A 1.849 × 10–9 3.638 × 10–9 4.722 × 10–9  4.790 × 10–9 9.134 × 10–9 8.143 × 10–9 
A2 — — —  1.8295 2.5 1.9436 
Ior2, A — — —  1 × 10–7 1 × 10–7 9.311 × 10–8 
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Table 2 Computed performance indices of the sharp ND240QCJ module 

Performance index (STC) Voc, V Isc, A Pmax, W VMPP, V 

Targeted value 37.5 8.75 240 29.3 
Single-diode model GA Value 37.481 8.739 240.28 29.28 

Error, % –0.051 –0.13 0.117 –0.068 
PSO Value 37.499 8.74 239.99 29.28 

Error, % –0.003 –0.114 –0.004 –0.068 
BF Value 37.495 8.743 240.1 29.28 

Error, % –0.013 –0.08 0.042 –0.068 

Double-diode model GA Value 37.497 8.738 239.99 29.34 
Error, % –0.008 –0.137 –0.004 0.137 

PSO Value 37.499 8.744 239.99 29.28 
Error, % –0.003 –0.069 –0.004 –0.068 

BF Value 37.491 8.743 239.98 29.28 
Error, % –0.024 –0.08 –0.008 –0.068 

 
Figure 5 Comparison of experimental measurements and 

computed performance of the single-diode model of 
sharp ND240QCJ module (see online version  
for colours) 

 

Figure 6 Comparison of experimental measurements and 
computed performance of the double-diode model of 
sharp ND240QCJ module (see online version  
for colours) 

 

4.2 Case study 2: modelling of extreme conditions 

The objective of this case study is to show the suitability of 
parameters extracted by the proposed method to model the 
performance of PV modules under the extreme conditions 
of low irradiance and partial shading. Parameters of the 
single- and double-diode models of an Eclipsall ME2-72P 
module are estimated via PSO since it showed superiority to 
both GA and BF in the previous case study. Information of 
the manufacturer datasheet, given in Table A1 is used to 
find the module parameters. The four indices of Voc, Isc, Pmax 
and VMPP at STC are used as the targeted performance of  
the module. It should be noted that partial shading was 
modelled in the laboratory by covering selected cells by 
different layers of translucent sheets of paper which  
tend to block light rays falling on the covered cell. The 
pyranometer sensor is always located under the covering 
paper in order to record the actual irradiance hitting the cell. 
Different levels of irradiance on various numbers of cells 
can be accordingly created. 

The algorithm is run for 300 iterations with swarm size 
of 40 particles for single- and double-diode models. PSO is 
run ten times for each model and the best result is taken as 
the solution of the optimisation problem. The run time of 
the single-diode model is always less than that of the 
double-diode model due to the lesser computational burden 
per iteration. The obtained parameters are listed in Table 3. 

Computed and measured performances are compared at 
low irradiance and partial shading conditions as shown in 
Figure 7. At the presence of bypass diodes, the model in 
Patel and Agarwal (2008) is used to simulate module 
characteristics under the partial shading condition when  
24 cells receive 147 W/m2, 24 cells receive 74 W/m2 and  
24 cells receive 48 W/m2 at 38°C temperature. A good 
matching is noticed between experimental and analytical 
results. Therefore, the effectiveness of the proposed 
technique to find a set of parameters accurately representing 
the performance under extreme operating conditions is 
evident. 
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Table 3 Estimated parameters of the Eclipsall ME2-72P 
module 

Parameter Single-diode 
model 

Double-diode 
model 

Objective function 0.0029 0.0033 
Convergence time, sec 10.65 13.46 
Rs, Ω 0.9274 0.873 
Rsh, Ω 1500 1500 
A1 0.9468 0.9606 
Ior1, A 5.659 × 10–11 8.204 × 10–11 
A2 — 2.3154 
Ior2, A — 9.958 × 10–8 

Figure 7 Comparison of experimental measurements and 
computed performance of the Eclipsall ME2-72P 
module (see online version for colours) 

 

4.3 Case study 3: parameters extracted from 
measurements 

The targeted performance used with the objective  
function in equation (8) could be obtained through 
measurements in case datasheet is not available or in case 
the module performance is deteriorated due to aging. The 
nominal short-circuit current at STC (In) and short-circuit 
current temperature coefficient (ki) are assumed unknown. 
Therefore, the search space of single- and double-diode 
models accordingly becomes of dimension 6 and 8, 
respectively. Measurements are taken in the laboratory on 
an LDK C1D2-140P solar module. The open-circuit voltage 
and short-circuit current at three different conditions are 
recorded. Such voltage and current readings shown in  
Table 4 are considered the targeted performance of the 
objective function. 

Comparing the six targeted measurements to their 
corresponding computed values, the error function in 
equation (8) is minimised using PSO. The algorithm is run 
for 300 iterations with swarm size of 60 and 80 particles for 
the single- and double-diode models, respectively. The best 
results of ten runs on each model are given in Table 5.  
To validate the obtained parameters, experimental 

measurements of module performance are compared to 
analytical results at two different operating conditions, 
Figure 8. Measurements of module voltage and current are 
taken at 875 W/m2 irradiance with 23°C temperature and  
at 84 W/m2 irradiance with 21°C temperature. The 
methodology is validated by the good matching between 
measured and computed performance of Figure 8, even at 
low irradiance operation. On all cases reported in this paper, 
computed performances of the single- and double-diode 
models are very close to each other. 

Table 4 Measured performance of the LDK C1D2-140P 
module 

Operating point 1 2 3 
Irradiance, W/m2 95 165 850 
Temperature, °C 20 19 23 
Open-circuit voltage, V 20.5 21.05 22.35 
Short-circuit current, A 0.8 1.3 7.1 

Figure 8 Comparison of experimental measurements and 
computed performance of the LDK C1D2-140P 
module (see online version for colours) 

 

Table 5 Estimated parameters of the LDK C1D2-140P 
module 

Parameter Single-diode 
model 

Double-diode 
model 

Objective function 0.0693 0.0692 
Convergence time, sec 27.12 44.58 
Rs, Ω 0.7257 0.962 
Rsh, Ω 647.31 756.15 
A1 1.0136 1.0152 
Ior1, A 3.661 × 10–10 3.801 × 10–10 
A2 — 2.1843 
Ior2, A — 9.981×10–8 
In, A 8.3791 8.3803 
ki, %/°C 0.033344 0.046402 
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5 Conclusions 

The paper presents a technique for parameter estimation of 
PV modules based on global search and optimisation 
algorithms. A set of equivalent circuit parameters which 
minimises the error between targeted and computed 
performance indices of the PV module is searched. Targeted 
performance could be obtained from the manufacturer 
datasheet or measured in the laboratory. The technique 
could be arbitrarily applied to single- or double-diode 
models. 

Three case studies of different objectives are reported in 
this paper. In the first case study, the global optimisation 
algorithms of GA, PSO and BF are used to extract PV 
module parameters of the single- and double-diode models 
from datasheet information. Comparing the performance of 
all three algorithms for the same population size and 
number of iterations, it is shown that PSO gives best results 
in shortest convergence time. Otherwise, BF is characterised 
by the highest robustness. 

The parameters of a different PV module are estimated 
via datasheet information using PSO in the second case 
study. The module performance is modelled under the 
extreme operating conditions of low irradiance and partial 
shading. The good matching between measured and 
computed performance indicates the accuracy of modelling. 

The third case study shows the flexibility of the 
proposed method regarding the source of targeted 
performance and number of estimated parameters. 
Assuming datasheet is missing, measured open-circuit 
voltages and short-circuit currents of another PV module is 
used as targeted performance. Meanwhile, the number of 
sought parameters accordingly increases. A good matching 
between experimental and analytical performances of the 
module is also observed. 

One distinct advantage of the proposed methodology, in 
comparison to other techniques available in the literature, is 
the usage of a simple and straightforward formulation of the 
objective function to be minimised. It is also flexible on the 
nature of the PV model, source of targeted performance, 
number of sought parameters and global optimisation 
algorithm to be used. 
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Appendix 

Table A1 Datasheet information of the PV modules 

Make Sharp Eclipsall 

Model ND240QCJ ME2-72P 
Voc, V 37.5 45.1 
Isc, A 8.75 8.58 
Pmax, W 240 300 
VMPP, V 29.3 36.71 
ki, %/°C 0.053 0.053 
Number of cells 60 72 

 


