Iterative sequential bat algorithm for free-form rational Bézier surface reconstruction
by Andrès Iglesias; Akemi Gálvez; Marta Collantes
International Journal of Bio-Inspired Computation (IJBIC), Vol. 11, No. 1, 2018

Abstract: Surface reconstruction is an important issue in many areas: CAD/CAM (reverse engineering for automotive, aerospace and shipbuilding industries), rapid prototyping, biomedical engineering (customised prosthesis, medical implants), medical imaging (computer tomography, magnetic resonance), and others. A classical approach in the field is to consider free-form polynomial surfaces. However, the polynomial scheme cannot replicate many shapes such as the quadrics. In this paper, we overcome this limitation by using rational Bézier surfaces. This rational case is more complicated than the polynomial one, leading to a difficult over-determined nonlinear continuous optimisation problem. Our approach is based on a powerful bio-inspired technique called bat algorithm, sequentially applied in our method to compute the data parameters and weights. This process is performed iteratively with the output of each bat algorithm as the input of the next one, and so on. Then, the poles are computed by SVD least squares approximation. Our method has been applied to three illustrative examples with remarkable results. It can recover the underlying shape of complicated surfaces with good accuracy for data points affected by measurement noise and irregular sampling. Comparative work with common approaches in the field shows that our method outperforms them for all instances in this paper.

Online publication date: Wed, 28-Feb-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com