New power law inflow boundary conditions for street scale modelling
by Vasilis Akylas; Fotios Barmpas; Nicolas Moussiopoulos; George Tsegas
International Journal of Environment and Pollution (IJEP), Vol. 62, No. 2/3/4, 2017

Abstract: In street scale numerical simulations utilising computational fluid dynamics (CFD) models, normally the inlet flow should preserve the horizontal homogeneity upstream and downstream of the area where the resolved obstacles reside. Hence, the vertical profiles of the main atmospheric flow quantities must comply with the roughness characteristics of the ground surface. Horizontally homogenous boundary conditions do not normally agree with field measurements while at the same time the profiles obtained by measurements do not preserve the homogeneity of the flow. As a result, in recent years alternative sets of boundary conditions have been proposed in order to bridge the gap between real life vertical profiles of the atmospheric boundary layer and those applied as input boundary conditions for modelling purposes. In the present study, the homogeneity of the boundary conditions is addressed by applying the power law for the mean wind speed to obtain the appropriate vertical profiles.

Online publication date: Tue, 23-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com