Numerical analysis of the oscillation frequency of the shock wave and the evaporation level on the Mach disc in the IMP PAN nozzle
by Sebastian Kornet; Janusz Badur
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 17, No. 6, 2017

Abstract: In the present paper, we have focused on the phenomena occurring in the supersonic part of the de Laval nozzle, characterised by oscillation of the shock wave in steam flow. The effect of shock oscillation was observed by using the Töpler optical system in the IMP PAN experiment carried out on a symmetrical planar de Laval nozzle. Having observed the shock fluctuation in wet steam flow, according to Puzyrewski's observations, we analysed the oscillation frequency in the IMP PAN nozzle depending on the pressure conditions. Additionally, we analysed the evaporation level of condensate droplets during passage through the Mach disc depending on the inlet conditions. The model of a single continuum wet steam model with a special microstructure growing up during phase transitions was validated on an experiment carried out by Dykas et al. in 2013 on the half arc nozzle. The present work includes simulations results of oscillation frequency of the shock wave and the evaporation level of the liquid phase on the Mach disc.

Online publication date: Tue, 19-Dec-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com