Process analysis of resistance spot welding on the Inconel alloy 625 using artificial neural networks
by Hosein Tavakoli Hoseini; Mohammadreza Farahani; Majid Sohrabian
International Journal of Manufacturing Research (IJMR), Vol. 12, No. 4, 2017

Abstract: In this article, the influence of the important resistance spot welding process parameters on the shear-tensile strength of the welded joints of Inconel alloy 625 was investigated. Experimental study using full factorial design of the electrode force, welding current, welding time parameters was conducted. In order to identify the effects of each factor and their interaction, the artificial neural network was employed. The R2 equal to 98.11% of the model confirmed the effectiveness of the ANN model for describing the correlation between the welding parameters and joint strength. It was observed that the welding current was the most influential process parameter on the joint strength and in return the welding time had the least influences. Interaction between the welding parameters occurred only at very high welding currents. It was observed that the ANN model provides a lucrative reference for RSW strength characterisation of Inconel alloy 625. [Received 12 October 2016; Revised 23 January 2017; Accepted 26 April 2017]

Online publication date: Tue, 05-Dec-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Research (IJMR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com