Identification of a dynamical model for phytoplankton bloom based on high frequency measurements
by Hafiz Ahmed; Rosane Ushirobira; Denis Efimov; Wilfrid Perruquetti
International Journal of Environment and Pollution (IJEP), Vol. 62, No. 1, 2017

Abstract: High frequency measurements of various water characteristics and nutrients information of the Marel-Carnot sea monitoring station (Boulogne-sur-Mer, France) have been used to identify a physiological model for phytoplankton bloom through the fluorescence signal. An auto-regressive-moving-average with exogenous inputs (ARMAX) model is designed and tested based on the dataset. The model takes into account the effect of the measured water characteristics and nutrient level information. Through this study, it is demonstrated that the developed dynamical model can be used for estimating the fluorescence level (which characterises the phytoplankton biomass) and for predicting the various states of phytoplankton bloom. Thus, the developed model can be used for monitoring phytoplankton biomass in the water which in turn might give information about an unbalanced ecosystem or change in water quality.

Online publication date: Mon, 27-Nov-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Pollution (IJEP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com