Cyclopropylamine modified plasma polymerised poly(methyl methacrylate) thin films for cell culture
by Vincent Chan; Chuan Li; Ya-Hui Tsai; Y.H. Tseng; Yun Chen
International Journal of Nanotechnology (IJNT), Vol. 14, No. 12, 2017

Abstract: Cyclopropylamine (CPA) is a biochemical active, volatile low carbon polymer. It usually is rendered as a compound, for instance the N-substituted cyclopropylamine, to synthesise many antidepressants or anticancer pharmaceuticals. On the other hand, poly(methyl methacrylate) (PMMA) commonly known as acrylic is a transparent thermoplastic polymer. Because of its nontoxic, stable physical and chemical properties, and because it is inexpensive and easy to processed, PMMA is widely used as structural and adhesive material. In this study, we fabricated CPA-PMMA thin films by plasma polymerisation and investigated the microstructure, surface morphology, optical properties and wettability of films. The plasma polymerisation was conducted in a vacuum chamber powered by a radio frequency supply. The composition of mixed monomers was controlled by the ratio of partial pressure of monomer gases. The deposited films were subjected to the following measurements: surface profiler for the average thickness and deposition rate, Fourier transform infrared (FTIR) spectrometer for the vibrational modes of microstructures; contact angle for the wettability, and UV-Vis-NIR spectrometer for the optical transparency and absorption. Finally these films were prepared for cell culture and the host was chosen to be 3T3 fibroblasts. The culture was assessed by MTT assays to evaluate the cellular viability in culture media and directly on films. Results from cell culture showed that all films are nontoxic and capable of supporting the growth of 3T3 fibroblasts.

Online publication date: Wed, 01-Nov-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com