Oxidation behaviours of Ti(C, N, O) nanocomposite coatingsLin
by J.H. Hsieh; Y.J. Cho; C. Li
International Journal of Nanotechnology (IJNT), Vol. 14, No. 12, 2017

Abstract: It is known that the lifetime of Ti-based hard coatings is dependent on the oxidation rate of Ti. Ti(C,N,O) coatings prepared by an unbalanced magnetron sputtering process had been shown to have improved tribological properties. The present studies applied a static oxidation approach to explain that the oxidation activation energy could be correlated to wear rate. The properties of the oxidised films were analysed by Raman spectroscopy and scanning electron microscopy (SEM). In static oxidation, the formed titanium oxide (TiO2) layer was found to have mainly anatase structure at temperatures between 500°C to 600°C and transformed to rutile structure at temperature higher than 600°C. Through this study, oxidation rate and activation energy of oxidation for each sample were evaluated. It was found the samples exhibited a higher activation energy of oxidation could have a higher wear resistance. The role of oxidation mechanism was proved to be critical to the wear of Ti(C, N, O) thin films

Online publication date: Wed, 01-Nov-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com