Thoracoabdominal injury analysis of a 6-year-old pedestrian finite element model in vehicle-pedestrian collisions
by Wenle Lv; June Ruan; Haiyan Li; Shihai Cui; Lijuan He; Shijie Ruan
International Journal of Vehicle Safety (IJVS), Vol. 9, No. 4, 2017

Abstract: A holistic human body finite element model of a 6-year-old pedestrian was completed by integrating the skin, soft tissues and joint ligaments, based on the component models of a 6-year-old child. The complete model was verified by comparing to available cadaveric test data. Then it was used to simulate collisions of midsize car/SUV-paediatric pedestrian at different collision speeds, in order to study the effects of collision speed, and vehicle type on kinematic/biomechanical responses of paediatric chest and abdomen, and to predict the injuries of bones and internal organs according to compression/viscous criterion and strain. Simulation results showed that the number of rib fractures increased with the increase of collision speed in collision simulations of midsize car-paediatric pedestrian, but no rib fracture appeared in simulations of SUV-paediatric pedestrian impact. Maximum values of chest/abdomen/thigh impact forces, maximum deformation/VCmax of paediatric chest and abdomen, and maximum first principal strain of internal organs were proportional to collision speed. Predicted paediatric chest and abdominal injuries, obtained from the midsize car-pedestrian simulations, were found to be consistent when compression/viscous criterion and first principal strain were used as a yardstick for injury assessment. Additionally, compression/viscous criteria had some limitations on the prediction of rib fracture in SUV-pedestrian collision simulations.

Online publication date: Fri, 06-Oct-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Safety (IJVS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com