Exergetic analysis of plate evaporator using hybrid nanofluids as secondary refrigerant for low-temperature applications
by Atul Bhattad; Jahar Sarkar; Pradyumna Ghosh
International Journal of Exergy (IJEX), Vol. 24, No. 1, 2017

Abstract: The brine-based hybrid nanofluids are proposed as a secondary refrigerant in counter-flow corrugated plate evaporator for low-temperature applications. Different types of alumina hybrid nanofluids containing different nanoparticles (copper, silver and multi-walled carbon nanotube) in equal volume with the total volume concentration of 0.8% dispersed in different brines have been assessed for certain cooling load. Various exergetic performance parameters-based comparison has been performed with brines and related hybrid nanofluids for milk chilling, ice making and fish freezing applications. Some energy-exergy relationships have been established as well. Exergetic performance decreases with a decrease in application temperature. The maximum reduction in irreversibility and non-dimensional exergy destruction, and maximum increase in irreversibility distribution ratio (IDR) and exergetic efficiency have been obtained for propylene glycol brine-based alumina multi-walled carbon nanotube hybrid nanofluid. The study reveals that the brine-based hybrid nanofluids may be the suitable substitute as a secondary refrigerant.

Online publication date: Sun, 01-Oct-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com