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Abstract: Large-scale assessment data have become increasingly popular in 
educational research. Factor model invariance testing is also a key feature of 
educational research, as scholars seek to identify situations where scales work 
comparably for different subgroups in the population. There exist a variety of 
methods for assessing invariance; however, standard approaches for this 
purpose can be cumbersome with a large number of groups, and do not 
typically accommodate invariance assessment across multiple variables 
simultaneously. The purpose of this study is to demonstrate the use of 
Structural Equation Modelling Trees for invariance assessment with complex 
large scale assessment data. The results of the study, involving Programme for 
International Student Assessment reading interest inventory data, found a lack 
of invariance based on nation of residence, language spoken in the home and 
family socioeconomic status. Advantages, and disadvantages, of SEMtree when 
compared to other methods for invariance assessment are discussed in light of 
these findings. 
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1 Introduction 

A foundational principle underlying the use of educational and psychological 
measurements is that the scales used to assess latent constructs provide the same 
information in the same way for individuals in the population, regardless of the 
subgroup(s) to which they belong (Millsap, 2011). Put another way, a psychologist using 
a scale to ascertain whether a child may have Autism needs to be certain that the score 
obtained from that scale provides the same quality of information for males as it does for 
females. Indeed, such equivalence of measurement is a key component that must be made 
in any validity argument about the scale (Horn and McArdle, 1992). The area of 
invariance testing has been the subject of much research, with a number of approaches 
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suggested for this purpose (see Millsap, 2011 for a discussion of these). Most frequently, 
these methods make use of comparisons of fit to the data for models that have different 
levels of constraints placed upon parameters of interest. For example, researchers 
interested in determining whether the loadings for a factor are equivalent between two 
groups (e.g. males and females) would fit one model in which the loadings are 
constrained to be equal for the groups, and another for which the loadings are allowed to 
vary. The fits of the two models are then compared using a difference of some fit statistic 
between the two models, such as the Chi-square goodness of fit statistic or the 
comparative fit index (CFI). If this difference is statistically meaningful (i.e. a 
statistically significant Chi-square or CFI change of 0.01 or more) then it is determined 
that at least some of the parameters being assessed are not equal for the two groups. 

A limitation of the traditional invariance assessment approach as outlined above is 
that it can be quite cumbersome to use when there are many groups for which invariance 
testing is desired (Asparouhov and Muthén, 2014). For example, researchers working 
with large international educational assessments who are interested in the extent to which 
there is invariance of model parameters across several nations may find the standard 
technique for invariance assessment to be difficult to use. In addition, the traditional 
approach to the invariance problem does not easily accommodate continuous variables, 
such as family income, or age of the subject. Recent work by Merkle and Zeileis (2013) 
has demonstrated how the invariance testing paradigm can be extended to address this 
situation. However, this approach, which is based upon an extension of the Lagrange 
Multiplier, does not address the aforementioned issue of having a large number of groups 
for which invariance assessment is desired, though it does allow for invariance 
assessment with respect to a continuous variable. 

Given the increasing popularity of large scale data collection efforts such as the 
Programme for International Student Assessment (PISA), Trends in International 
Mathematics and Science Study (TIMMS), Progress in International Literacy (PIRLS), 
the Early Childhood Longitudinal Study (ECLS) and the National Assessment of 
Educational Progress (NAEP), among others, in educational research, and the importance 
of assuring that assessments perform equivalently across groups, as well as levels of 
continuous variables, it is crucial that researchers have access to tools for assessing 
invariance in such complex cases. The purpose of the current study is to describe the 
work by Brandmaier et al. (2013) in the area of recursive partitioning for structural 
equation models (SEM), and to demonstrate how it can be applied to invariance 
assessment in the context of large scale databases, with both continuous and categorical 
variables for which invariance is of interest. In addition, the results from recursive 
partitioning will be compared with those of the alignment procedure (Asparouhov and 
Muthén, 2014), which has been shown to be a viable option in the assessment of 
invariance for a large number of groups. The manuscript is organised as follows: first a 
very brief review of traditional invariance assessment is described, after which the 
alignment procedure is discussed, followed by structural equation modelling trees. The 
research problem that is the focus of the current study as well as the methods used to 
address them are then described, followed by a detailed review of the results of these 
analyses. Finally, the results are discussed in the context of both the current dataset, as 
well as more broadly in terms of application in a wide array of contexts. 
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1.1 Traditional invariance testing 

The basic factor model that is assumed to link observed indicator variables, such as items 
on a scale, and the latent trait being measured, such as reading interest, takes the form 

Λτ ξ δ= + +x  (1) 

where Vector of observed indicator variables;e.g. items on a scale or subscale scores=x  
in a battery,  

Vector of latent traits being measured by ξ = x , 
Λ Matrix of factor loadings linking  and ξ= x , 

Vector of intercepts associated with τ = x , 
Vector of unique errors associated with δ = x . 

The model in Eq. (1) implies the following covariance matrix for the observed 
indicators: 

Σ ΛΨΛ Θ= ′ +  (2) 

where Σ Covariance matrix of the observed indicators,  = x ,  

Ψ Covariance matrix of the latent traits= , 
Θ Covariance matrix of unique error terms,  assumed to be diagonal= . 
As mentioned above, the most common methodology for assessing factorial 

invariance (FI) is based on multiple group confirmatory factor analysis (MGCFA). For 
the parameters in (1) and (2), invariance assumptions build upon one another, and can be 
assessed using increasingly constrained MGCFA models. The weakest type of invariance 
under the FI umbrella is configural invariance (CI), for which the number of latent 
variables is the same across groups in the population, as is the correspondence of 
observed indicators to factors. However, no assumptions are made regarding group 
equality of the individual parameters in (1) and (2). If CI holds, these parameters can then 
be constrained in a stepwise fashion, leading to increasingly strong levels of invariance 
(i.e. parameter equality) across groups. The parameters that research has traditionally 
focused on are factor loadings (Λ ), known as metric invariance (MI) and factor 
intercepts (τ ), called scalar invariance or SI (Horn and McArdle, 1992; Millsap, 2011; 
Meredith, 1993; Steenkamp and Baumgartner, 1998; Wicherts and Dolan, 2010; 
Widaman and Reise, 1997). In order to assess MI, the Λ  estimates in (1) are constrained 
to be equal across groups. The 2χ  fit statistic is then obtained for this model and 
compared with the 2χ  value from the CI model using  

2 2 2
Δ MI CIχ χ χ= −  (3). 

2
Δχ  is distributed as a 2χ  with degrees of freedom equal to the difference in degrees of 

freedom for the two models. If 2
Δχ  is statistically significant, then we conclude that the fit 

of the two models differs and constraining the loadings to be equal across groups resulted 
in degraded model fit. If there is not degradation in fit, and thus MI holds, a similar 
approach is used to assess SI by comparing fit of the model in which τ  is allowed to 
differ across groups, and the model for which it is constrained to be equal. It should be 
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noted here that some authors have recommended using differences in other fit statistics, 
such as the CFI (Cheung, 2005) in order to ascertain whether more and less constrained 
models are statistically different. 

1.2 Alignment procedure 

The approach outlined above for ascertaining whether the model in (1) is invariant across 
groups has been shown to work well in a variety of conditions (French and Finch, 2006). 
However, as Asparouhov and Muthén (2014) point out, it can be very difficult to use 
when the number of groups is large, because finding a good fitting model can become 
exceedingly challenging, particularly in the context of SI. They demonstrated that an 
alternative approach, known as the alignment methodology, can be a particularly 
effective tool in the context of invariance assessment for a relatively large number of 
groups, such as nations in the PISA assessment (Asparouhov and Muthén, 2014). 

The alignment procedure is based upon MGCFA, as described above and which can 
be expressed as: 

τ λ η ε= + +kig kg kg ig kigy  (4) 

where Indicator variable for individual in group=kigy k i g ,  

Threshold for item in groupτ =kg k g , 
Factor loading for indicator in groupλ =kg k g , 
Latent trait for individual in groupη =ig i g , 
Random error for individual on item in groupε =kig i k g . 

The alignment procedure is carried out using the following steps: 

1 Estimate the configural factor model allowing all λkg  and τ kg  to vary across groups, 
but constraining group factor structure to be the same. This is model M0. 

2 Transform factor means (αg ) to 0 and factor variances (ψ g ) to 1 for each group. 

3 Express item variances (V) and means ( ( ))E ykg  in terms of factor variances, means 

and item parameter values for M0: 

( ) 2 2
0λ ψ λ= =kg kg g kgV y  (5) 

( ) 0τ λ α τ= + =kg ik kg g kgE y
 (6) 

where loadings and intercepts for M0 are 

0λ λ ψ=kg kg g  (7) 

0
0

λ
τ τ α

ψ
= + kg

kg kg g
g  (8) 

4 For every αg  and ψ g  there are an infinite number of threshold and loading sets that 
will yield the same fit to the data as does M0, without constraining any loadings or 
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thresholds to be equal between the groups. The goal of the alignment procedure is to 
find an alternative model (M1) that yields the same (or close) fit as M0, but does so 
using a set of factor loadings and thresholds that are as similar among the groups as 
is possible, unlike was the case for M0. The loadings and thresholds for M1 can be 
expressed in terms of M0 loadings and thresholds: 

0
1

λ
λ

ψ
= kg

kg
g

 (9) 

0
1 0

λ
τ τ α

ψ
= − kg

kg kg g
g

 (10) 

5 Values of αg  and ψ g  for step 4 are selected to minimise the amount of group 

difference in the factor model parameters (i.e. 1λkg  and 1τ kg ), which is done by 
minimising the loss function, F. 

( ) ( )1, 2 1, 1 1, 2 1, 2 1, 1 1, 2
1 2 1 2

λ λ τ τ
< <

= − + −∑ ∑ ∑ ∑g g pg g pg g g g pg g pg g
p g g p g g

F w f w f  (11) 

where 

( ) 2 0.0001= +f x x  

1, 2 1 2=g g g gw N N ; weight reflecting groups’ sizes. 

For every pair of groups (e.g. g1, g2) F is incremented by the difference in model 
parameter estimate values. 

The alignment procedure is designed to yield a model in which a small number of 
parameters exhibit relatively large differences across groups, and the great majority of 
parameters are equal (or nearly so) across groups. In order to ensure model identification, 

1ψ∏ =g . The αg  values can be either freely estimated (free alignment) or fixed to 0 for 
all groups (fixed alignment). This distinction and its implications will be discussed in 
more detail below. 

Once model alignment is completed, individual parameters can be tested for 
invariance across groups. This testing is done using the following algorithm: 

1 For a given parameter (i.e. loading/discrimination, threshold/difficulty) on a target 
item, compare estimates for each pair of groups with a formal hypothesis test 
(discussed below). Groups are connected on that parameter if p > 0.01 for the test 
statistic. 

2 The largest connected set of groups is identified for the target item parameter. 

3 The mean of the target item parameter is calculated for the connected set identified 
in step 2. 

4 The target item parameter for each group is compared with the mean for the 
connected set using a test statistic. If p > 0.001, the group is added to the connected 
set, and if not the group is removed from the connected set. 

5 Repeat steps 3 and 4 until the connected set does not change. 
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6 Group pairs in which one is not in the connected set and the other is are said to 
exhibit DIF on the target item parameter. 

Parameter estimation for the alignment procedure can be carried out using either 
maximum likelihood estimation, or the Bayesian framework based on the Markov Chain 
Monte Carlo (MCMC) methodology. Given prior research (Asparouhov and Muthén, 
2014), the Bayesian approach appears to yield more accurate parameter estimates, and 
more accurate tests of group equality, in the form of the posterior distribution of 
parameter group differences. For this reason, it was used in the current study. 

Although the alignment method has proven to be quite effective in the context of 
invariance assessment with a large number of groups, as is the case with large scale 
assessment programs such as PISA and PIRLS, it does have two limitations that may 
restrict its utility in many situations. First, the alignment procedure only allows for 
assessment of invariance for one variable at a time. This limitation is certainly also true 
for the standard MGCFA approach outlined earlier in this paper. However, it does mean 
that researchers who would like to ascertain whether invariance is present for multiple 
variables simultaneously (e.g. nation and gender) cannot do so with the alignment or 
traditional methods. Second, the alignment method is limited to testing invariance for 
categorical variables only. Therefore, researchers interested in determining whether 
invariance holds for a variable such as socioeconomic status (as measured on a 
continuous scale), or family income cannot use the alignment procedure for this purpose. 
In addition, the alignment method cannot be employed with a continuous variable, such 
as income, for example. For these reasons, although quite useful in some circumstances, 
the alignment procedure may not be appropriate for all scenarios involving large scale 
assessments in which invariance testing may be of interest. 

1.3 Structural equation modelling trees 

Bandmaier et al. (2013) described an approach for building decision trees, in the context 
of latent variable modelling, that are an extension of model-based recursive partitioning 
(MBRP; Zeileis et al., 2008). This approach is known as structural equation modelling 
tree (SEMtree). With MBRP a researcher is able to assess the extent to which parameters 
of some model, such as slopes in a linear regression, are stable across the levels of one or 
more covariates. For example, a researcher may wish to know whether the regression 
coefficients are different for some nations in the PISA assessment, and/or across values 
of family income. Thus, we can view MBRP conceptually as a process of repeatedly 
partitioning the observations within the data set by levels of the covariates in order to 
create very homogeneous groupings of individuals based upon parameters in the model of 
interest. This use of covariates to repeatedly divide the data into ever more homogeneous 
groups with regard to an outcome of interest is frequently referred to as recursive 
partitioning. MBRP allows for multiple covariates, which can be either continuous or 
categorical. The result of an MBRP analysis is a decision tree with branches leading 
through a series of decision points (known as nodes) to a final set of terminal nodes that 
are differentiated by their values of the model parameters. 
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In general (including with latent variable models) MBRP is carried out using the 
following algorithm: 

1 Fit the model of choice (e.g. CFA) to all observations in the initial node (i.e. node 1). 

2 Assess parameter instability (i.e. inequality) for each possible partition of each 
covariate (e.g. nation, income) for each independent variable in the model, select the 
partition with the highest instability, and proceed to step 3. If no instability is 
present, the algorithm stops. 

3 Compute the split point of the model parameter value for the variable identified in 
step 2 that optimises partitioning group (e.g. nations) separation by yielding the most 
homogeneous (with respect to model parameters) child nodes possible. 

4 Divide the node based upon this split point to create two child nodes in which 
members of the partitioning variable with the most similar parameter estimates from 
step 3 are placed together. 

5 Repeat steps 1 through 4 until stability is achieved for all model parameters. In the 
context of SEMtrees, the model parameters of interest can be those in Eq. (1), or 
structural coefficients linking latent variables in a SEM. 

By default, model parameter estimation in step 1 is carried out using maximum likelihood 
estimation. However, as Brandmaier et al. (2013) note, this is not a requirement of the 
SEMtree approach, and indeed use of any alternative method for estimation, such as 
robust weighted least squares, is possible with SEMtrees. In the context of invariance 
assessment, parameter stability with SEMtree is assessed using a likelihood ratio test 
comparing the fit of a model in which parameters in Eq. (1) are constrained to be equal 
across all potential subgroups in the sample, and a model in which a split based upon a 
covariate is made. To provide context, the initial model can be referred to as 0M  and the 
observations in the node treated as a single group. The parameters in (1) are estimated 
and a log-likelihood value is obtained for 0M . The node is then split into two parts based 
upon one of the covariates. For example if nation is a covariate, then the first split might 
put residents of Nation 1 in one group, and residents of the other nations in the sample in 
the other group. The factor model is then fit such that the parameters are allowed to differ 
between the two splits. The log-likelihood for this second model, 1M , is then obtained. 
This step of dividing the data into two parts is repeated for every possible split of each of 
the covariates, and the resulting log-likelihood values are obtained. It can be shown that 
model 0M , in which all members of the sample are treated as a single group, is nested 
within the family of all possible splits models described above (Brandmaier et al., 2013). 
This fact allows for the comparison of model fit through the log-likelihood ratio as 
calculated below: 

1 0= −LR LL LL  (12) 

where 1 1Loglikelihood value for model=LL M ,  

0 0Loglikelihood valuefor model=LL M , 

( )2is distributed as a statistic with 1 degrees of freedomχ −LR k m ,  
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Number of  splits=k , 
Number of freelyestimated parameters.=m  

If no splits yields a statistically significant LR result, then growing of the tree stops. If 
there are multiple statistically significant LR results, the split that produces the greatest 
maximisation in the likelihood is chosen. 

An important issue that must be dealt with in this algorithm is control of the Type I 
error rate due to the multiple testing that is inherently a part of the tree building process. 
Brandmaier et al. (2013) discuss two approaches for dealing with this problem. The first 
is the standard correction of the Type I error rate using the Bonferroni approach. 
However, they note that this is a conservative technique for dealing with the Type I error 
inflation problem, and may lead to trees that are not sufficiently complex so as to capture 
true group differences in the model parameters. Another approach that they describe 
involves the use of cross-validation samples. With this approach, the original dataset will 
be divided into j cross-validation subsets ( jS ). Then, for each node, each potential split 
based upon each covariate will be tested using the full set of observations in that node, S, 
minus set jS . The value of LR will then be calculated using the observations in subset 

jS , and the model parameters obtained from the rest of the observations, as described in 
the previous step. The overall value for LR will then be taken as the average of the JLR 
estimates. Brandmaier et al. (2013) recommend using the cross-validation approach with 
SEMtree. They do note that the distribution of LR is no longer 2χ  in this case, so that the 
decision to accept a split should be based upon whether the split yields an LR value 
greater than 0, indicating that treating the subgroups differently yields superior fit to 
treating them as a unitary group. In this way, the splits are descriptive in nature, rather 
than inferential. 

In addition to Type I error rate inflation, a second potential problem associated with 
tree-based models is their tendency to use variables with more categories for splitting 
more often than variables with fewer categories, even if the latter actually are more 
important in the population (Jensen and Cohen, 2000). A number of approaches have 
been suggested for dealing with this issue, including use of hypothesis testing results 
rather than reduction in node heterogeneity for selecting the variable to use in a split (Loh 
and Shih, 1997), separation of the variable selection and split point decisions (Shih, 
2004), and examination of model residuals produced by using specific covariates for 
splitting (Loh, 2002). SEMtree uses an approach described by Kim and Loh (2001) 
involving the initial, independent identification of the optimal split point for each 
variable, and then selection of the optimal variable to use at a given split. 

1.4 Study goals 

The purpose of the current study is to demonstrate the use of SEMtree for investigating a 
lack of factor invariance for multiple variables simultaneously in the context of large 
scale assessments. Specifically, data from the 2009 administration of the PISA 
assessment (OECD, 2009) were used, with a particular focus on the 11 items of the 
reading interest scale. Invariance was investigated for the variables nation of residence, 
examinee sex, language spoken in the home (language of test or not) and a continuous 
indicator of socioeconomic status (SES). Of primary interest was the extent to which 
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invariance held across these variables, and whether there were interactions of the 
variables that were associated with a lack of invariance. In other words, it was of interest 
to determine whether, and how, model parameters differed for combinations of nation, 
sex, language spoken in the home and SES. Standard invariance analyses would examine 
each of these variables individually, but SEMtree can ascertain whether there exists a 
lack of invariance for combinations of them, which is often expressed in the context of an 
interaction among the variables. In addition to SEMtree, the alignment method described 
by Asparouhov and Muthén (2014) were also used to address the invariance question. 

2 Method 

The current study was conducted using the individual level data from PISA 2009, which 
is an international assessment of academic achievement focused on 15-year-old 
examinees from 63 nations, and their performance in reading and mathematics. A total of 
475,460 students (50.3% female) were included in the initial PISA data collection 
(OECD, 2009). For the purposes of the current study, 8,447 participants from the 20 
wealthiest nations, as measured by national GDP, were included in the study. The list of 
these nations appears in Table 1. 

Table 1 Percent female, percent language of the test spoken at home and mean (SD) SES 
index by nation 

Nation Female (%) Test language spoken at home (%) Mean (SD) SES index 
Australia 46.9 90.6 0.29 (0.77) 
Austria 51.1 85.9 0.06 (0.79) 
Belgium 52.2 75.4 0.23 (0.92) 
Canada 54.5 82.1 0.51 (0.83) 
Denmark 52.4 82.5 0.15 (0.92) 
Finland 51.7 91.4 0.30 (0.82) 
France 52.6 87.2 −0.21 (0.90) 
Germany 50.6 78.1 0.16 (0.83) 
Greece 49.2 94.2 0.06 (0.99) 
Hong Kong 45.5 90.6 −0.83 (1.01) 
Ireland 48.2 89.8 0.08 (0.85) 
Japan 51.2 97.9 −0.02 (0.74) 
The 
Netherlands 

49.1 90.6 0.35 (0.85) 

Norway 49.4 93.9 0.44 (0.77) 
Singapore 49.5 39.4 −0.50 (0.86) 
Spain 47.8 83.7 −0.28 (1.06) 
Sweden 51.0 89.5 0.31 (0.83) 
Switzerland 50.4 79.2 0.07 (0.87) 
UK 52.3 91.3 0.15 (1.08) 
USA 52.6 83.4 0.07 (1.01) 
Overall 50.5 84.4 0.09 (0.94) 
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In addition to the achievement testing variables, PISA also involves the collection of 
other information, including demographic data, and scales designed to measure a variety 
of constructs such as metacognitive strategy use, relationships with teachers and aspects 
of motivation. For the current study, a reading attitude scale will be assessed for model 
invariance. This scale is comprised of 11 ordinal items, measured on 4-point scale, where 
1 = Strongly Disagree, 2 = Disagree, 3 = Agree and 4 = Strongly Agree. The items appear 
in Table 2. When a total score is calculated, several items are reverse coded so that higher 
total scores reflect a more positive attitude towards reading. In this study, reading attitude 
was treated as a latent construct, and thus no reverse coding was necessary. 

Table 2 Standardised factor loadings and intercepts for the attitudes towards reading items for 
full sample 

Item Loading (SE) Intercept (SE) 
I1: I read only if I have to 0.769 (0.005) 2.360 (0.021) 
I2: Reading is one of my favourite hobbies −0.817 (0.004) 2.179 (0.020) 
I3: I like talking about books with other people −0.754 (0.005) 2.277 (0.021) 
I4: I find it hard to finish books 0.507 (0.009) 2.209 (0.020) 
I5: I feel happy if I receive a book as a present −0.753 (0.005) 2.393 (0.022) 
I6: For me, reading is a waste of time 0.754 (0.005) 2.028 (0.019) 
I7: I enjoy boing to a bookshop or a library −0.739 (0.006) 2.305 (0.021) 
I8: I read only to get information that I need 0.654 (0.007) 2.545 (0.023) 
I9: I cannot sit still and read for more than a few minutes 0.594 (0.008) 2.026 (0.019) 
I10: I like to express my opinions about books I have read −0.584 (0.008) 2.662 (0.023) 
I11: I like to exchange books with my friends −0.693 (0.006) 2.174 (0.020) 

Several variables were assessed for invariance, including nation of residence, examinee 
sex, language spoken in the examinee’s home (language of the test or not) and the 
socioeconomic status of the examinee’s family. The PISA SES index is derived from a 
factor analysis of variables that include parental education levels, parental occupations 
and the possessions in the home. This SES variable is scales with a mean of 0 and a 
standard deviation of 1, so that positive values indicate that an examinee’s family SES is 
above average and a negative value means that it is below average. It is on a common 
scale across the world. 

As mentioned previously, invariance assessment was conducted using the alignment 
procedure (Asparouhov and Muthén, 2014) and SEMtree (Brandmaier et al., 2013). 
Because the alignment procedure is limited to assessing invariance for one variable at a 
time, it was only used to determine whether invariance held cross-nationally. The MCMC 
algorithm was used to fit the alignment model, with 2 separate chains, and a total of 
20,000 links in each chain. The first 5,000 links in the chain served as the burnin period, 
and the chains were thinned such that every 100th value was sampled, leading to a total 
of 1,500 observations in the posterior distribution of each parameter. The median of the 
posterior was taken as the point estimate for each of the parameters. Model convergence 
was assessed using convergence plots, as well as the proportional scale reduction (PSR), 
which had to be less than 1.05 for all parameters in order for convergence to be attained. 
The alignment procedure did in facto reach convergence for all model parameters. 
SEMtree was also be used in this context so that the results of the methods could be 
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compared with one another. In addition, SEMtree was also be used with nation, as well as 
examinee sex, language spoken in the home, and SES as potential splitting variables. The 
settings used for SEMtree were the defaults. Therefore, the significance level for 
determining splits was 0.05, the Bonferroni correction was used to control the Type I 
error rate, the minimum number of individuals to be included in each node was 20, splits 
resulting in Heywood cases were excluded from the tree, and the method for determining 
splits as described above and by Kim and Loh (2001) were used. In order to ensure the 
generalisability of the final tree in terms of identification of optimal splits, fivefold cross-
validation was used, per recommendations by Brandmaier et al. (2013), and as described 
above. For both the alignment procedure and SEMtree, a one factor CFA model was fit to 
the reading attitude items. 

3 Results 

3.1 Sample description 

Table 1 includes the percentage of examinees who were female, and the percent for 
whom the test language was also the primary language spoken in the home, by nation. In 
addition, Table 1 also includes the mean and standard deviation of the SES index by 
nation. From these results, it is apparent that Singapore had the lowest percent of 
examinees who spoke the test language in their homes (39.4%) and Japan had the highest 
such percentage (97.9%). Overall, 84.4% of the sample reported the test language as the 
primary tongue spoken in the home. Across the nations included in the sample, 50.5% 
were female, with Hong Kong reporting the lowest percent of female examinees, and 
Canada reporting the highest percent. Finally, the mean and standard deviation of the 
SES index by nation appears in the final column of Table 1. The nation in this sample 
with the lowest mean SES was Singapore, whereas the nation with the wealthiest students 
in the sample was Canada. The overall mean SES index across nations was 0.09, with a 
standard deviation of 0.94. 

The CFA model for reading was fit to the full sample, ignoring nation, sex, home 
language and SES. The purpose behind fitting this model was to ascertain whether it fit 
the full sample. The CFI and TLI were 0.915 and 0.894, respectively, whereas RMSEA 
was 0.104, with a confidence interval of (0.101, 0.107). The SRMR for this model was 
0.048. Considered together, these fit indices suggest that the model did not provide a very 
good fit to the full sample, based on commonly used guidelines for what constitutes 
reasonable fit (Kline, 2016); i.e. RMSEA ≤ 0.08, CFI and TLI > 0.95 and SRMR < 0.10. 
The standardised factor loadings and intercepts, as well as their associated standard 
errors, appear in Table 2. These loadings were all statistically significant (α = 0.05), 
indicating that the individual items were each related to the reading attitude factor. In 
addition, the absolute values of the standardised loadings were all above 0.58, and 
generally above 0.60, except for the item “I find it hard to finish books”. The items that 
were associated with a positive attitude towards reading displayed negative loadings, 
whereas the measures of a negative reading attitude had positive loadings. This is because 
the first item, “I read only if I have to” serves as the reference indicator giving the factor 
its scale, and it is a measure of negative reading attitude. Thus, higher values on the latent 
trait would indicate more negative attitudes towards reading. 
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3.2 Alignment 

The alignment procedure was used first to determine whether there was a lack of factor 
model invariance by nation. Recall that this method seeks to identify subsets of the 
grouping variable of interest (nation in this case) for which each of the factor model 
parameters are invariant. Table 3 contains the standardised factor loadings for the 
attitudes towards reading items by nation. Loadings found to be noninvariant are 
highlighted in bold. For item 1, France and Greece were found to have noninvariant 
factor loadings when compared to those of the other nations, with their loadings being 
somewhat lower than those of the other countries included in the sample. These results 
suggest that for Greece and France item 1 (“I read only if I have to”) was more weakly 
related to the reading factor than it was for the other nations. A similar result for Greece 
was found for item 2 (“Reading is one of my favourite hobbies”), whereby the item was 
more weakly related to the factor than was the case for the other nations. In addition to 
Greece, noninvariance was also identified for item 2 with respect to Japan. However, in 
this case, the absolute value of the loading for Japan was larger than for the other nations 
(except Hong Kong), indicating that it was more strongly related to the reading factor. 
Note that although the loading estimate for Hong Kong was larger than for Japan, it was 
not found to be significantly different from the loadings for the other nations. This is due 
to the relatively large standard error for the Hong Kong item 2 loading (0.091) as 
compared to that of Japan (0.050), and indeed all of the other nations, which had values 
comparable to that of Japan. Similar interpretations of the results can be made for the 
loadings of each of the other items on the scale. 

Table 3 Standardised factor loadings for the attitudes towards reading items by nation 

Nation I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 

Overall 0.769 −0.817 −0.754 0.507 −0.753 0.754 −0.739 0.654 0.594 −0.584 −0.693 

Australia 0.805 −0.822 −0.690 0.549 −0.667 0.839 −0.809 0.682 0.699 −0.603 −0.609 

Austria 0.899 −0.782 −0.720 0.561 −0.785 0.822 −0.703 0.649 0.466 −0.624 −0.728 

Belgium 0.838 −0.758 −0.654 0.560 −0.784 0.896 −0.780 0.497 0.602 −0.642 −0.684 

Canada 0.786 −0.821 −0.747 0.485 −0.759 0.758 −0.781 0.652 0.626 −0.619 −0.738 

Denmark 0.738 −0.786 −0.805 0.466 −0.838 0.783 −0.888 0.683 0.531 −0.493 −0.720 

Finland 0.822 −0.886 −0.782 0.505 −0.729 0.785 −0.835 0.712 0.478 −0.580 −0.615 

France 0.604 −0.714 −0.765 0.551 −0.755 0.810 −0.622 0.579 0.698 −0.669 −0.849 

Germany 0.869 −0.866 −0.741 0.554 −0.754 0.825 −0.710 0.763 0.497 −0.541 −0.671 

Greece 0.476 −0.599 −0.780 0.439 −0.794 0.480 −0.900 0.610 0.501 −0.731 −0.784 

Hong Kong 0.684 −1.047 −0.750 0.842 −0.731 0.618 −0.881 0.453 0.852 −0.400 −0.617 

Ireland 0.838 −0.789 −0.726 0.553 −0.655 0.804 −0.710 0.554 0.866 −0.663 −0.768 

Japan 0.928 −0.974 −0.808 0.660 −0.720 0.637 −0.631 0.488 0.648 −0.535 −0.619 

The 
Netherlands 

0.927 −0.760 −0.670 0.492 −0.744 0.902 −0.820 0.692 0.569 −0.475 −0.735 

Norway 0.810 −0.771 −0.815 0.407 −0.946 0.740 −0.790 0.779 0.591 −0.522 −0.648 

Singapore 0.857 −0.848 −0.699 0.534 −0.777 0.723 −0.765 0.765 0.565 −0.635 −0.547 

Spain 0.776 −0.876 −0.828 0.426 −0.848 0.648 −0.703 0.617 0.527 −0.582 −0.805 
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Table 3 Standardised factor loadings for the attitudes towards reading items by nation 
(continued) 

Nation I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 

Sweden 0.848 −0.845 −0.727 0.432 −0.727 0.737 −0.817 0.718 0.604 −0.641 −0.663 

Switzerland 0.890 −0.807 −0.678 0.608 −0.777 0.809 −0.765 0.664 0.558 −0.552 −0.660 

UK 0.764 −0.809 −0.766 0.560 −0.696 0.742 −0.757 0.599 0.706 −0.665 −0.735 

USA 0.800 −0.787 −0.689 0.607 −0.746 0.835 −0.745 0.647 0.685 −0.575 −0.750 

Bold indicates a lack of loading invariance 

Table 4 includes the factor intercept estimates by nation, with noninvariant results 
highlighted in bold. Perhaps most notable is that there were many more noninvariant 
intercepts than there were noninvariant loadings (57 versus 16). Intercepts reflect the 
location of the item, so that this relatively large number of noninvariant results indicate 
that respondents from different nations were likely to provide different mean responses to 
the items, after accounting for the factor means. A detailed review of these results is 
beyond the scope of the current manuscript. However, a review of item 1 can provide 
guidance for understanding the other results in the table. For item 1 (“I read only if I have 
to”), the intercepts for Belgium, Hong Kong, Japan, Norway, Sweden and Switzerland 
were found to be noninvariant when compared to the other nations in the sample.  
A further examination of the values of these estimates shows that those of Belgium, 
Norway, Sweden and Switzerland were lower than those of most other nations, whereas 
the estimates for Hong Kong and Japan were larger than most others. Therefore, it would 
appear that respondents in Hong Kong and Japan were more likely than respondents in 
the other nations to agree that they read only if they had to, and those in Belgium, 
Norway, Sweden and Switzerland were less likely to agree with this statement. Again, a 
detailed review of these results can reveal other, similar types of results. 

Table 4 Factor intercepts for the attitudes towards reading items by nation 

Nation I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 
Overall 2.360 2.179 2.277 2.209 2.393 2.028 2.305 2.545 2.026 2.662 2.174 
Australia 2.103 2.417 2.388 1.991 2.611 1.786 2.608 2.189 1.802 2.530 2.194 
Austria 2.100 2.202 2.266 1.751 2.650 1.772 2.306 2.223 1.498 2.953 2.286 
Belgium 1.977 2.267 2.339 1.957 2.432 1.748 2.511 2.188 1.784 2.781 2.346 
Canada 2.142 2.385 2.410 1.958 2.474 1.824 2.611 2.186 1.845 2.619 2.400 
Denmark 2.178 2.307 2.447 1.716 2.489 1.726 2.505 2.254 1.699 3.103 2.138 
Finland 2.030 2.356 2.232 1.895 2.564 1.853 2.554 2.158 1.640 2.710 2.050 
France 1.969 2.249 2.492 2.159 2.374 1.770 2.542 2.223 1.866 2.829 2.615 
Germany 2.013 2.246 2.232 1.765 2.641 1.848 2.205 2.170 1.554 2.848 2.249 
Greece 2.227 2.286 2.310 2.181 2.415 1.568 2.540 2.173 1.948 2.952 2.507 
Hong Kong 2.425 2.658 2.529 2.073 2.525 1.767 2.680 2.404 1.948 2.571 2.472 
Ireland 2.022 2.416 2.377 2.098 2.517 1.731 2.594 2.192 1.913 2.530 2.396 
Japan 2.273 2.384 2.360 1.930 2.344 1.683 2.910 1.881 1.709 1.966 2.229 
The 
Netherlands 

2.150 2.136 2.155 1.691 2.663 1.747 2.471 2.083 1.678 2.458 2.309 
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Table 4 Factor intercepts for the attitudes towards reading items by nation (continued) 

Nation I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 
Norway 1.977 2.151 2.291 1.801 2.543 1.771 2.268 2.157 1.635 2.868 2.126 
Singapore 2.232 2.623 2.456 2.237 2.591 1.679 2.958 2.426 1.860 2.550 2.376 
Spain 2.174 2.348 2.401 2.198 2.389 1.660 2.244 2.196 1.758 2.828 2.456 
Sweden 1.944 2.328 2.349 1.738 2.352 1.807 2.445 1.931 1.635 2.669 2.162 
Switzerland 1.993 2.240 2.190 1.847 2.605 1.751 2.448 2.201 1.639 2.759 2.222 
UK 2.069 2.340 2.449 2.035 2.625 1.704 2.450 2.231 1.844 2.604 2.311 
USA 2.276 2.408 2.408 1.946 2.431 1.756 2.710 2.202 1.898 2.668 2.438 

Bold indicates a lack of loading invariance 

3.3 SEMtree 

The SEMtree approach was also used to assess the invariance of model parameters for the 
reading data, with two models being fit. First, a tree that only included nation as a 
splitting variable was used in order to obtain results that were comparable to those from 
the alignment procedure, which can only examine one variable at a time. The second 
model included nation, family SES, student sex and home language (language of test or 
not). The SEMtree based on nation only appears in Figure 1, and the parameter estimates 
for the terminal nodes from this initial model appear in Table 5. Note that the original 
tree created by the SEMtree function in R is difficult to read. For this reason, it was 
recreated here using another software package. With regard to the organisation of the 
nations by the SEMtree, Japan (Node 1) and Hong Kong (Node 5) were each placed in 
their own unique terminal nodes, whereas Greece and Spain were grouped together in 
Node 4. Node 2 consisted of Austria, Denmark, Finland, Germany, the Netherlands, 
Norway, Sweden and Switzerland, and Node 3 included Australia, Belgium, Canada, 
France, Ireland, Singapore, the USA and the UK. These nodes reflect groupings of 
nations that had statistically equivalent factor loadings and intercepts. In other words, 
within the nodes, the factor model parameters were found to be invariant. Thus, we can 
conclude that Japan and Hong Kong each had unique patterns of loadings and intercepts 
that differentiated them from all of the other nations included in the sample. In addition, 
Greece and Spain also had different factor model parameters from all of the other 
sampled nations, but were not different from one another. Finally, within this sample 
there were two large groupings of nations that had statistically equivalent factor loadings 
and intercepts within the groups, but which differed from the other nations in the sample. 
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Figure 1 SEMtree for model including nation only (see online version for colours) 

 

Table 5 Factor loadings for the attitudes towards reading items by SEMtree terminal node for 
nation only tree 

Item Node 1 Node 2 Node 3 Node 4 Node 5 
I1 0.938 0.850 0.787 0.626 0.684 
I2 −0.974 −0.813 −0.794 −0.738 −1.047 
I3 −0.808 −0.742 −0.717 −0.804 −0.750 
I4 0.660 0.503 0.550 0.433 0.842 
I5 −0.720 −0.788 −0.730 −0.821 −0.731 
I6 0.637 0.800 0.801 0.564 0.618 
I7 −0.631 −0.791 −0.746 −0.802 −0.881 
I8 0.488 0.708 0.622 0.614 0.435 
I9 0.648 0.537 0.681 0.514 0.852 
I10 −0.535 −0.554 −0.634 −0.657 −0.400 
I11 −0.619 −0.680 −0.710 −0.795 −0.618 

It is important to note here that although we can say with confidence that there are 
statistically significant differences among the nations with respect to the factor loadings 
and intercepts, it is not possible to identify specific loadings and intercepts that differ 
among the terminal nodes presented in Figure 1. In other words, we may see patterns of 
loadings and intercepts that appear to differ across the nodes, but we cannot say that any 
one of them is statistically significantly different among the nations. For this reason, we 
will discuss the trees in terms of patterns of loadings and intercepts that we see. From 
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Figure 1, we can see that there were a total of five terminal nodes in the tree including 
nation only. The nations included in each terminal node appear at the base of the tree. 
Table 5 includes the factor loadings for each terminal node in the nation only tree. From 
these results, several distinct patterns can be seen. First, the loading for Node 1, which 
contains Japan, were larger for item 1 than was the case for any of the other terminal 
nodes, indicating that this item was more strongly related to the latent trait of reading 
attitude for individuals in this node than for those in other nodes. In addition, loadings for 
Node 5, containing only Hong Kong, were larger for items 2, 4, 7 and 9 than was true for 
the other terminal nodes. Nodes 2 and 3 had the highest loadings for item 6, as did  
Node 2 for item 8. Node 4 had the largest loadings for items 5 and 11. 

Table 6 contains the factor intercepts for each item by terminal node. As with the 
loadings, it is possible to examine these intercepts with an eye towards patterns that 
differentiate the nodes from one another. For example, the intercepts for item 7 was 
largest for Node 1 (Japan). This result indicates that holding the factor mean constant, the 
mean of this item was larger for Node 1 than for the other nodes. Node 2 had the lowest 
intercepts among the nodes for items 4 and 9. Node 5 had the largest intercept values for 
items 1, 2, 3, 7 and 8. Nodes 3 and 4 had generally similar intercept estimates, with the 
exception of items 7 and 10. 

Table 6 Factor intercepts for the attitudes towards reading items by SEMtree terminal node for 
nation only tree 

Item Node 1 Node 2 Node 3 Node 4 Node 5 
I1 2.273 2.048 2.100 2.201 2.425 
I2 2.384 2.246 2.388 2.317 2.658 
I3 2.360 2.270 2.415 2.356 2.529 
I4 1.930 1.776 2.048 2.190 2.073 
I5 2.344 2.563 2.507 2.402 2.525 
I6 1.683 1.784 1.750 1.614 1.767 
I7 2.910 2.400 2.623 2.392 2.680 
I8 1.881 2.147 2.230 2.185 2.404 
I9 1.709 1.622 1.852 1.853 1.948 
I10 1.966 2.796 2.639 2.890 2.571 
I11 2.229 2.193 2.385 2.482 2.472 

As mentioned previously, one of the strengths of the SEMtree approach is the ability to 
include multiple covariates of any variable type (dichotomous, ordinal, nominal, count, 
continuous) for creating the tree. Therefore, a second tree was grown using the 
aforementioned PISA data, using nation, student sex, family SES (ESCS index), and 
language spoken in the home (language of test or not). The resulting tree appears in 
Figure 2. A total of 8 terminal nodes were needed for this second tree. Terminal nodes 1 
and 2 each include Austria, Belgium, France, Germany and Switzerland. They are 
differentiated by the SES index value (ESCS), such that Node 1 includes those 
individuals from the aforementioned nations whose family ESCS value was less than or 
equal to −0.143. Node 2 includes those whose ESCS was greater than −0.143. Nodes 3 
and 4 include Hong Kong, and Greece and Spain, respectively. Node 5 includes 
individuals from Denmark, Finland, the Netherlands, Norway, Singapore and Sweden. 
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Node 8 includes only Japan. Finally, Node 6 includes individuals from Australia, Canada, 
Ireland, the UK and the USA whose home language is not the language of the test, 
whereas Node 7 consists of examinees from those five nations whose home language is 
the language of the test. 

Figure 2 SEMtree for model including nation, SES, sex and home language (see online version 
for colours) 

 

When interpreting the results of the SEMtree, it again needs to be pointed out that these 
differences are for the sample and not necessarily true in the population, and that the 
SEMtree does not isolate specific differences among model parameters, but rather 
identifies differences in whole patterns of model parameters. Thus, while it is not 
incorrect to discuss apparent sample differences as just that, differences for the current 
sample, the different groups represented by the terminal nodes are representative of 
collective differences across the subgroups. Table 7 contains the factor loadings for each 
terminal node created by the SEMtree in Figure 1. When considering this tree, it might be 
of particular interest to consider how the model parameters differ between individuals 
from the same nations who differ on one of the demographic variables used in the 
splitting. For example, Nodes 1 and 2 differ based upon the level of family SES, with 
those in Node 1 having a lower value than those in Node 2. In terms of the factor 
loadings, we can see differential patterns across items such that individuals in Node 2 had 
somewhat larger loadings on items 1, 6 and 8. In contrast, the loadings for Node 1 were 
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larger for items 2 and 9. It should be noted that none of these sample differences in 
loadings were particularly large in magnitude. Nodes 6 and 7 also include individuals 
from the same set of nations, but who have different home languages. Node 6 includes 
those individuals whose home language is not the language of the test, whereas Node 7 
includes examinees who speak the language of the test in their homes. As was true for 
Nodes 1 and 2, the factor loadings for these nodes are generally fairly similar across 
items, with Node 6 having somewhat larger values for items 3, 4, 6, 8 and 9. Conversely, 
Node 7 had larger values for items 2 and 10. Given space limitations, we will not 
carefully dissect factor loading differences between each of the nodes, though this could 
certainly be done, given these results. 

Table 7 Factor loadings for the attitudes towards reading items by SEMtree terminal node for 
tree including nation, sex, language spoken in the home and family SES 

Item Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 
I1 0.790 0.833 0.684 0.626 0.834 0.787 0.799 0.938 
I2 −0.822 −0.794 −1.047 −0.738 −0.816 −0.781 −0.810 −0.974 
I3 −0.710 −0.721 −0.750 −0.804 −0.750 −0.738 −0.715 −0.808 
I4 0.545 0.570 0.842 0.433 0.473 0.577 0.548 0.660 
I5 −0.783 −0.764 −0.731 −0.821 −0.794 −0.711 −0.696 −0.720 
I6 0.821 0.855 0.618 0.564 0.778 0.810 0.786 0.637 
I7 −0.714 −0.717 −0.881 −0.802 −0.819 −0.760 −0.773 −0.631 
I8 0.600 0.659 0.435 0.614 0.725 0.674 0.558 0.488 
I9 0.578 0.553 0.852 0.514 0.556 0.738 0.699 0.648 
I10 −0.619 −0.603 −0.400 −0.657 −0.558 −0.611 −0.648 −0.535 
I11 −0.724 −0.709 −0.618 −0.795 −0.655 −0.721 −0.720 −0.619 

The factor intercept estimates for the terminal nodes in the second SEMtree appear in 
Table 8. Recall that these represent the means of the items for the nodes when we hold 
the factor means constant. From these values, we can see that the intercepts for Node 1 
were generally larger than for Node 2 on items 1, 4, 6 and 9, whereas the intercepts for 
Node 2 were larger for items 2, 3, 7, 10 and 11. Considering the content of the items, it 
appears that the intercepts for items that reflected a more negative attitude towards 
reading were larger for individuals from Austria, Belgium, France, Germany and 
Switzerland who were relatively less well off financially, whereas for examinees from 
these nations who had a relatively higher family SES, intercepts were larger on the items 
reflecting a more positive attitude towards reading. In terms of Nodes 6 and 7, larger 
intercept values were found for Node 7 on items 2, 7, 10 and 11. Node 6 had larger 
intercept estimates for items 4, 6 and 9. Taken together, it appears that individuals from 
Australia, Canada, Ireland, the UK and the USA who did not speak the language of the 
test in their homes had larger intercept estimates for items that were generally less 
positive with respect to attitudes towards reading. However, examinees from these 
nations who did speak the test language in their homes had larger intercept values on 
several items associated with more positive attitudes towards reading. Similar reflections 
on all of the terminal nodes could be made. However, in the interest of keeping the 
manuscript size manageable, this will not be done here. 
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Table 8 Factor intercepts for the attitudes towards reading items by SEMtree terminal node for 
tree including nation, sex, language spoken in the home and family SES 

Item Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 
I1 2.305 1.909 2.425 2.201 2.085 2.104 2.291 2.273 
I2 2.033 2.417 2.658 2.317 2.317 2.065 2.559 2.384 
I3 2.108 2.556 2.529 2.356 2.322 2.301 2.489 2.360 
I4 1.999 1.750 2.073 2.190 1.846 2.100 1.898 1.930 
I5 2.472 2.671 2.525 2.402 2.534 2.527 2.544 2.344 
I6 1.803 1.688 1.767 1.614 1.764 1.886 1.639 1.683 
I7 2.296 2.632 2.680 2.392 2.534 2.334 2.791 2.910 
I8 2.214 2.185 2.404 2.185 2.168 2.185 2.238 1.881 
I9 1.893 1.522 1.948 1.853 1.691 1.947 1.676 1.709 
I10 2.767 2.998 2.571 2.890 2.726 2.419 2.638 1.966 
I11 2.117 2.548 2.472 2.482 2.194 2.205 2.888 2.229 

4 Discussion 

The goal of this study was to demonstrate the utility of SEMtree (Brandmaier et al., 
2013), a new approach for latent variable modelling, for invariance testing with structural 
equation modelling with large scale assessments, and to compare this method with 
another relatively new technique that has been shown to be useful in similar 
circumstances, the alignment procedure (Asparouhov and Muthén, 2014). The results of 
this study show that SEMtree presents several advantages to the researcher working with 
large scale assessment data, and who is interested in invariance assessment. First, as was 
demonstrated here, SEMtree provides for the identification of subgroups within the data, 
based upon model parameter differences. For example, when considering Figure 1, we 
can conclude that there exist subsets of nations with statistically equivalent factor model 
parameters. In other words, for these subgroups the reading interest scale was found to be 
invariant. In this case, when considering the PISA 2009 data and focusing on nation only, 
SEMtree identified five groupings of countries, represented by the terminal nodes in 
Figure 1. Nations within the same node have a completely invariant set of factor model 
parameters, whereas nations in different nodes have at least one factor model parameter 
difference. Thus, we can see that Japan and Hong Kong have unique factor models when 
compared to all other nations in the sample. Greece and Spain have equivalent factor 
models to one another, that differ from those of the other sampled nations, and there exist 
two larger groups of nations that have invariant factor model parameter values. 

These results would seem to have several implications for practice. First, the fact that 
subgroups were found within the data, based on nation, SES and language spoken in the 
home, suggest that researchers consider such differences when comparing scores on the 
attitudes towards reading scale across nations, and subgroups based upon language 
spoken in the home and SES, as identified by the trees. Essentially, the results presented 
here provide the same information as would a standard invariance study (Millsap, 2011). 
Thus, for example, when nations appear in different terminal nodes, we can conclude that 
a lack of CFA model parameter invariance has been found. Given this fact, we must then 
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consider the impact of this lack of invariance on the scale scores, and on the meaning of 
the scale for individuals in different nodes. The impact of such partial invariance on scale 
interpretation is one of ongoing research, without a clearly defined answer as of this 
writing (Steinmetz, 2013; Millsap and Meredith, 2007). Millsap and Meredith describe 
three options for researchers faced with the issue of partial invariance 

1 drop indicators that are shown to be noninvariant across groups and calculate 
composite scores using only those that are fully invariant 

2 avoid using the scale altogether, or 

3 ignore the presence of noninvariant parameters and argue that they are not 
sufficiently different or sufficiently numerous as to be problematic. 

Each of these approaches to dealing with PI presents the researcher with problems, and 
no clear solution that works in every instance of noninvariance has been identified. 
Millsap and Kwok (2004) described how, in the context of classification using a latent 
variable, invariance can be dealt with. Likewise, Byrne (1989) described the modelling of 
partial invariance when estimating factors for members of different subgroups. However, 
as stated above, there does not exist a well-defined rule for determining when invariance 
might be problematic, though work on effect sizes for this purpose are ongoing (Millsap 
and Olivera-Aguilar, 2012). 

With these issues in mind, let us consider just one example from Figure 2. Nodes 6 
and 7 contain individuals from the same nations, but who differ based upon whether the 
language of the test is spoken in the home, or not. For those who do not speak the test 
language at home, the loading for item 8 (I read only to get information that I need) is 
larger (by 0.12) than for those who do speak the test language at home. This suggests that 
the relationship between the attitudes towards reading factor and the item is stronger for 
those who do not speak the test language at home. In contrast, the intercept of item 11  
(I like to exchange books with my friends) is higher for those who do speak the test 
language at home than those who do not. In other words, when the attitude towards 
reading is the same for respondents in both groups, those who speak the test language are 
more likely to agree with this item. Such results may be interesting in themselves, as they 
might highlight differences in the way that children with different language backgrounds 
might feel about reading. In this example, it would appear that there is some evidence to 
support the notion that for respondents who do not speak the test language and who live 
in Australia, Canada, Ireland, the UK or the USA, reading may be seen as somewhat 
more utilitarian than for those who do speak the test language. In addition, as discussed 
previously it is not clear to what extent these noninvariant findings might impact the total 
reading attitude score. We might consider the impact in this case to be fairly minor given 
that there were not large differences in loadings and intercepts for many items. We must 
keep in mind, however, that it is not clear how much invariance is needed in order to 
fundamentally alter the meaning of scales. For this reason, employment of effect sizes 
(Millsap and Olivera-Aguilar, 2012) may prove to be useful. In order to fully describe the 
results of SEMtree, we would engage in a similar detailed exploration of model 
parameter differences across the various nodes, in order to characterise the individuals 
contained therein. 

A second major advantage of SEMtree for invariance assessment, in addition to the 
identification of subgroups with invariant model parameters, is its ability to include 
multiple variables of various types when determining where invariance does (and does 
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not) hold. This was represented by the SEMtree model appearing in Figure 2. In addition 
to nation, the student sex, family SES and language spoken in the home were also 
included in the analysis. These results showed that for some nations these variables were 
salient with respect to the invariance of factor model parameters, and for other nations 
they were not. As an example, for Austria, Belgium, France, Germany and Switzerland, 
family SES was associated with noninvariant loadings and/or intercepts, such that those 
with relatively lower SES index values had different model parameters than did those 
with relatively higher family SES. Similarly, noninvariance associated with the language 
spoken in the home was found to be present for Australia, Canada, Ireland, the UK and 
the USA. For the other nations in the sample, however, no such demographic sources of 
factor model parameter noninvariance were identified. Therefore, SEMtree allows for a 
more tailored identification of noninvariance by combinations of variables, rather than in 
a more broad brush fashion by looking at one variable (e.g. nation) at a time. 

A third positive aspect of SEMtree is the identification of subsets of the variable of 
interest (e.g., nation) for which the groups had equivalent factor model parameter values. 
Other methods, such as the alignment procedure, identify specific model parameters that 
differ across the groups, but do not provide information about which of the individual 
groups might have statistically equivalent model parameters. SEMtree does provide such 
information, allowing the researcher to make some conclusions regarding for which 
nations, in the case of the current study, examinee scores could be compared. This 
creation of subsets for which model parameters are equivalent could be quite useful for 
researchers interested in working further with the scale(s) of interest. 

5 Limitations 

Despite these advantages that are presented by SEMtree, some weaknesses in the method 
should also be noted. First, SEMtree identifies patterns of factor model noninvariance, 
but does not yield results for specific comparisons on each of the model parameters. The 
alignment procedure was able to identify each difference on each parameter for each 
nation included in the sample. SEMtree, in contrast, identified groups of nations for 
which there were differences in at least one of the factor model parameters. However, 
unlike with the alignment method, it was not possible to identify specifically which of 
these parameters were different for which pair of nations. A second potential weakness of 
the SEMtree approach to doing invariance testing in the large scale assessment context is 
the amount of computing time that is necessary to actually conduct the analysis. For the 
nation only SEMtree model represented in Figure 1, the total computing time was 36 h 
and 23 min, using the full PISA dataset. For the more complex model including nation, 
sex, ESCS, and home language, the total computing time was 51 h and 19 min. 
Therefore, the researcher working with a large scale assessment including a big sample, 
such as with PISA, PIRLS or TIMMS, must allow for a sufficient amount of time to fit 
the model. It is also true that SEMtree converged much more quickly (less than 30 min) 
for smaller datasets. 
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6 Conclusion 
SEMtree represents a powerful tool for researchers working with large scale 

assessment data and who need to investigate factor model invariance. It allows for 
invariance assessment of variables with many categories (e.g. nations), as well as 
multiple variables of various types (continuous, binary, multinomial). In addition, it 
provides subsets of the groups of interest so that when a large number of them are 
present, the researcher is able to identify those that are statistically equivalent, and which 
can thus be treated as the same. These qualities make SEMtree potentially quite useful for 
researchers working with large scale assessment data, where such variable types are 
common, and complex interactions among them might be anticipated. 
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