Numerical investigation of a control channel behind a backward-facing step in a duct
by Houda Benlaalam Bouchtout; Amina Mataoui; Faiza Kendil Zidouni
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 17, No. 5, 2017

Abstract: Flow control over a backward-facing step (BFS) by continuous suction/blowing is numerically investigated. This study examines the influence of blowing/suction rate, and slot size on the detachment process. Fluid flow is assumed turbulent, incompressible, 2D and steady in average. The governing equations are discretised by the finite volume method based on the k-ε RNG one point closure turbulence model. The investigations were performed for a Reynolds number of 3.5 104 with respect to the step height (h). Several blowing/suction rates are checked (-0.035 < Cq < +0.035) for four slot size cases namely (a = 0.95 mm, 2.25 mm, 3 mm and 5 mm). All results indicate that suction/blowing shortens the reattachment length and reduces the turbulence energy. The detailed flow structure suggests a way of shortening of the recirculation length with increasing the blowing/suction rate. Through different flow conditions, two correlations for reattachment length related to blowing or suction rate are proposed. The smallest slot size produces greatest turbulence kinetic energy and maximum friction all considered suction/blowing rates.

Online publication date: Mon, 04-Sep-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com