Thermodynamic exergy analysis of dysprosium oxide-based solar thermochemical water-splitting cycle
by Rahul R. Bhosale; Anand Kumar; Parag N. Sutar; Aliya Banu
International Journal of Exergy (IJEX), Vol. 23, No. 3, 2017

Abstract: The effect of water splitting temperature on the parameters required for the design of solar thermal reactor to conduct the dysprosium oxide based water splitting (Dy-WS) cycle was investigated by using the HSC Chemistry software. The effect of water splitting temperature on the absorption efficiency of the solar reactor, net solar energy required to run the Dy-WS cycle, re-radiation heat losses from the solar reactor, heat rejected by different coolers and water splitting reactor involved in this cycle, and solar-to-fuel energy conversion efficiency with and without heat recuperation was explored. Obtained results indicate that the Dy-WS cycle carried out by using the thermal reduction temperature = 2280 K and water splitting temperature = 1000 K yields into solar-to-fuel energy conversion efficiency = 10.3%. This efficiency can be increased up to 14.62% by employing heat recuperation (50%).

Online publication date: Sat, 12-Aug-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com