Scratching of SiC ceramics at two dimensional pre-stressing
by Gaofeng Zhang; Yijiang Zeng; Wenbo Zhang
International Journal of Nanomanufacturing (IJNM), Vol. 13, No. 3, 2017

Abstract: A stress field model was built to study the effects of pre-stressing value, normal and tangential load on the three principal stresses and maximum shear stress when the silicon carbide (SiC) ceramics were scratched under two dimensional pre-stressing, and the scratching tests of SiC ceramic were conducted by using a Rockwell diamond indenter at different pre-stress values and normal loads. Scratching induced damage was assessed and characterised via destructive inspection techniques and progressive lapping techniques combined with the digital microscope. Acoustic emission (AE) technology was also used for the online monitoring of the damage. The results showed that, for a given scratching load, the amplitude of AE signals was reduced as the pre-stress values increasing, and surface/subsurface damage of SiC ceramics induced by two dimensional pre-stress scratching was less than that by conventional scratching. So one can believe that the two dimensional pre-stress method can contribute to decreasing the machining damage of brittle materials.

Online publication date: Wed, 12-Jul-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com