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Abstract: The effect of acceleration – variable forward velocity, have been 
investigated on the steady-state and transient responses of turning vehicles and 
the resulted path of motion of the vehicle. Comparing the two mentioned 
responses of the vehicle could be used to prove that there is a negligible 
difference between the steady-state and transient centre of rotation of the 
vehicle in engineering applications. Dynamics of a vehicle with a constant  
steer angle and variable forward velocity have been analysed and presented  
as the proof. It has been shown that it is possible to predict the dynamics of 
vehicles using their steady state responses within acceptable engineering 
approximations. More specifically, we determine the dynamic rotation centre of 
vehicles and compare them with steady-state values. The result would be 
essential to design autodriver algorithm for autonomous vehicles. 

Keywords: vehicle dynamics; steady-state vehicle behaviour; rotation centre of 
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1 Introduction 

The equations of motion of the planar bicycle car model, expressed in the principal body 
coordinate frame B, is governed by the following set of nonlinear coupled ordinary 
differential equations. In the equations, the steering angle δ acts as the input and, forward 
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velocity of the centre of the mass of the vehicle vx, lateral velocity vy, and yaw rate r, are 
the outputs (Jazar, 2013). 

1  = +x x yv F rv
m

 (1) 
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The orthogonal body coordinate frame B is fixed to the vehicle at its mass centre C and is 
set such that the x-axis is longitudinal, y-axis is lateral, and z-axis is vertical upwards. The 
body coordinate and kinematics of the bicycle car model in a forward motion on a 
positive turn are illustrated in Figure 1. 

The coefficients Cr, Cβ, Cδ, Dr, Dβ, Dδ in the equations of motion are slopes of the 
curves for lateral force Fy and yaw moment Mz as a function of r, β, and δ respectively. 
The coefficients Cr and Dr are functions of vx, and the coefficients Cβ, Cδ, Dβ, Dδ are 
constant for a given vehicle. In this case it is been assumed that the vehicle is moving 
with a constant steer angle equal to: 

( ) 0.1 rad 5.37 deg= =tδ  (11) 

The forward velocity of the vehicle changes with time according to the following 
function: 
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0 0
0 

20 ( ) 20 ( ) m/s= − + −xv tH t t H t t
t

 (12) 

where vx changes from vx = 0 m/s at t = 0 to the maximum speed vx = 20 m/s at t = t0, and 
remains constant afterwards. H(t − t0) is the Heaviside function: 

0 
0

0

0    
( )

1    
<⎧

− = ⎨ >⎩

t t
H t t

t t
 (13) 

Figure 1 Kinematics of a moving vehicle at steady-state conditions 

 

The equations of motion of a two-wheel rigid vehicle with no roll are as the following: 

1  = +x x yv F rv
m

 (14) 
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When vx is known, either is constant or varying with time, equation (15) becomes 
independent from (14). The set of equation (15) can then be written in the form 

[ ] = +q q uA  (16) 

in which [A] is a constant coefficient matrix, q is the vector of control variables, and u is 
the vector of inputs. 
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The following characteristics for a sample car will be used to develop the equation of 
motion. 

2

1 2

  50,000 N/rad    50,000 N/rad
  1,000 kg                 1,650 kgm  
  1.0 m                     1.5 m

= =

= =
= =

f r

z

C C
m I
a a

α α

 (20) 

In the following sections, we calculate the transient response of an understeer passenger 
car that is moving with a constant steering angle equal to equation (11) and a variable 
forward velocity which changes with time according to equation (12). The transition 
behaviour of the car will be determined using steady-state responses to examine the 
proximity of the two analysis. It will be shown that steady-state response equations are 
good enough to predict the transition behaviour of the car. 

The results of this investigation are expected to be useful in speeding up the online 
calculation of autodriver algorithm (Jazar, 2010), as well as obtaining data to determine 
the steady-state behaviour of vehicles (Tahami et al., 2003). 

2 Steady-state responses 

When the vehicle is turning at a steady-state condition, its behaviour is governed by the 
following equations: 

= −x x y
mF v v
R

 (21) 

( )2 1
+ − = −r x xC C v mv C

Rβ δβ δ  (22) 
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1
+ = −r xD D v D

Rβ δβ δ  (23) 

from which, we can define a set of steady-state responses (Jazar, 2013): 

1 curvature response, Sκ 

  1
 (     )
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= = =

− +x r r x
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δ β β
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β β β
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δ δ

 (24) 

2 sideslip response, Sβ 
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3 yaw rate response, Sr 
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4 centripetal acceleration response, Sa 
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5 lateral velocity response, Sy 
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Figure 2 illustrates steady-state responses for the sample car mentioned above. 

Figure 2 Steady-state responses of a sample vehicle, as functions of forward velocity vx  
(see online version for colours) 
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The vehicle is understeer because of a positive stability parameter K (Jazar, 2013) 

2 1 
2

0.0016 0
⎛ ⎞

= − = >⎜ ⎟
⎝ ⎠f r

m a aK
l C Cα α

 (29) 

And the steady-state responses for the case of variable speed will be: 

1 curvature response, Sκ 
10

11
8 9
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2 sideslip response, Sβ 
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3 yaw rate response, Sr 
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4 centripetal acceleration response, Sa 
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5 lateral velocity response, Sy 
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where Z = tH(−t + 20) + 20H(t − 20). 

Employing the steady-state responses, we can determine the variation of the kinematics 
of motion as functions of time t. 

3 Steady-state rotation centre and path of motion 

Having the steady-state responses Sk = 1/R/δ and Sβ = β/δ, we are able to determine the 
steady-state position of the rotation centre (xO, yO) of a vehicle in the vehicle body 
coordinate frame as is illustrated in Figure 3. 
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1sin sin( )= − = −O
k

x R S
S ββ δ
δ

 (35) 

1cos cos ( )= =O
k

y R S
S ββ δ
δ

 (36) 

Figure 3 The coordiantes ( ,  )steady steadyO Ox y  of the steady-state rotation centre of the vehicle in the 
body frame for 0 ≤ t ≤ 20 s 

 

At steady-state conditions the radius of rotation R can be found from the curvature 
response Sκ, equation (30), and the vehicle sideslip angle β from the sideslip response Sβ 
[equation (31)]. 
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Therefore, the steady-state position of the dynamic centre of rotation O in the body 
coordinate frame B, about which the vehicle will actually turn, is at 
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Figure 4 illustrates the coordinates steadyOx  and steadyOy  of the vehicle for 0 ≤ t ≤ 20 after 
substituting equation (12) in to equations (39) and (40) At a constant steer angle, the 
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dynamic rotation centre of the understeer vehicle moves away and forward by increasing 
the forward velocity. The rate of the displacement of the rotation centre increases by 
speed. Figure 4 depicts how location of the centre of rotation with respect to the body 
frame of the vehicle changes with speed. It indicates the critical speed at which the 
velocity vector of the vehicle at its mass centre is in the x direction only. At the critical 
speed, we have β = 0 and the dynamics centre of rotation is located on the y-axis. 

Figure 4 The location of the steady-state rotation centre in the body frame for 0 ≤ vx ≤ 20 

 

The global frame G is fixed to the ground, and B coincides G at the beginning of 
manoeuvres. The B-frame moves with the vehicle while the axes z and Z are always 
parallel. Therefore, the velocity vector of the vehicle in the global frame is 

cos   sin
sin      cos

cos sin
cos sin

− ⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

v v xG G B
B
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x y X

y x Y

v
R

v

v v v
v v v

ψ ψ
ψ ψ

ψ ψ

ψ ψ

 (41) 

where GRB is the transformation between B and G and the velocity vector of the vehicle in 
the body frame is 

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

v xB

y

v
v

 (42) 

Therefore, the global coordinates of the mass centre of the vehicle would be 

0 0
( cos sin ) = == −∫ ∫

t t
X x yX v dt v v dtψ ψ  (43) 

0 0
( cos sin ) = = +∫ ∫

t t
Y y xY v dt v v dtψ ψ  (44) 

When the steer angle is kept constant, and after reaching the top speed of 20 m/s the 
vehicle will eventually be turning on a constant circular path. The position of the  
steady-state rotation centre of the vehicle in the B-frame is at 

sin 1.6994 m= − =Osteadyx R β  (45) 

cos 40.965 m= =Osteadyy R β  (46) 

because 
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lim 41 m
→∞

=
t

R  (47) 

lim 0.04146 rad
→∞

= −
t

β  (48) 

The global coordinates of the steady-state rotation centre is 

  5.8 m
 

  23.9 m
⎡ ⎤ ⎡ ⎤ −⎡ ⎤

= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦
rsteady steady

steady steady

O OG G
B BG

O O

X x
R

Y y
 (49) 

where rG
OO  is the G-expression of the position vector of the origin of the B-frame with 

respect to the origin of the G-frame at any point on the steady-state conditions  
(Jazar, 2011). In this example, we used the calculated data at t = 2 s when we have 

 
 1.6994 m
 40.965 m
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

steady

steady

O

O

x
y

 (50) 

3.84 rad=ψ  (51) 

27.345 m
50.182 m
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
rG

OO  (52) 

Figure 5 The steady-state path of motion of the vehicle and its rotation centre (see online 
version for colours) 

 

Figure 5 illustrates the instantaneous path of motion of the vehicle in global frame and its 
final steady-state rotation centre. The magnification of the transient stage depicts how the 
vehicle approaches its steady state circular path. 
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4 Dynamic solution rotation centre and path of motion 

In order to be able to compare the dynamic solution results which will be called the 
‘exact solution’ from now on with the steady-state solutions called ‘approximate solution’ 
let’s solve equations (15), (16) and (19). The equations of motion will turn to the 
following after substituting all the variables and nominal values from the sample car: 

25( )  ( 20) 20 ( 20) ( ) 5
( 20)  20 ( 20)

⎛ ⎞
= − − + − − −⎜ ⎟− + + −⎝ ⎠

yv t tH t H t r t
tH t H t

 (53) 

15.1515 ( ) 98.4848 ( )( ) 3.03
( 20) 20 ( 20) ( 20) 20 ( 20)

= + −
− + + − − + + −

yv t r tr t
tH t H t tH t H t

 (54) 

These are exactly equal to the same values for the approximate solutions in  
equations (47) and (48). This means that the path of motion for both solutions is exactly 
the same after they get to the steady-state condition. So, every deviation in the final path 
of motion of the two solutions has happened during the transition time. 

The centre of rotation of the vehicle in the body frame (Xo, Yo) are found as the 
following: 

1.6994 m
40.965 m

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

O

O

x
y

 (55) 

which are again the same, which indicates that the path of motion taken by the vehicle in 
both situations will look the same from the eye of the passengers of the car. 

Figure 6 The coordinate (xO, yO) of the steady-state rotation centre of the vehicle in the body 
frame for 0 ≤ t ≤ 20 m 
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Figure 7 The location of the dynamic rotation centre in the body frame for 0 ≤ vx ≤ 20 m/s 

 

But in order to find the centre of rotation in the global frame we will need to repeat the 
equations (43) and (44). Following the same steps as before we will get: 

3.82 rad=ψ  (56) 

27.345 m
50.182 m
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
rG

OO  (57) 

We will get, 

  5.61 m
 

  24.22 m
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
rO OG G

O BO
O O

X x
R

Y y
 (58) 

Figure 8 The dynamics response (exact) path of motion of the vehicle and its rotation centre 
(see online version for colours) 
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5 Conclusions 

The steady-state responses of a vehicle which starts moving with a constant steering 
angle, while the forward velocity is changing with time has been calculated for a sample 
car. The same sample has been used to solve the problem with the same condition 
dynamically. The final path of motion has been calculated for both of the above 
conditions. By comparing the exact and approximate paths of motion we will be able to 
decide whether the approximate method is accurate enough for engineering purposes. The 
reason behind all these is to make the calculation expenses for autonomous algorithms for 
autodriver shorter and less complicated. There will be two methods for comparing the 
two resulted paths of motion. The first method is to compare the position of the vehicle at 
any moment of time on the two paths and check the distance between the positions of the 
two. The difference resulted in this case will include the transition time lag for the exact 
path which will cause the vehicle to fall behind. The reason is that for the approximate 
method no time is taken by the system to achieve the steady-state condition. For this case 
the values used for calculating the global position of the centre of rotation can be used for 
calculating the global position of the centre of rotation can be used from equations (52) 
and (59). These are the actual positions of the vehicle on the paths of motion at time  
t = 14.985 s. 

These values indicate that the two vehicles are just 0.624 m apart in the x direction 
and 0.668 m apart in the y direction. The total distance of the two paths of motion at this 
moment of time is only 0.91 m which is only 2.2% of the radius of rotation. Figures 9 and 
10 indicate the deviation in the x and y direction during the time of motion which makes 
it possible to find out the maximum deviation of the two resulted paths. 

Figure 9 Deviation in the x direction – time lag included 
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Figure 10 Deviation in the y direction – time lag included 

 

The only problem here is that there is no way to make sure at what time during the 
motion we are getting the biggest deviation of the two paths. In order to get a more 
accurate result on the deviation of the two paths, we will have to find a second method 
for comparing. By comparing only the global centre of rotation of the two paths of 
motion we can compare the two paths only by their geometry, which is a more accurate 
way because, firstly what is important for the research is to find the difference in the 
geometry of the two generated paths and secondly we can make sure this is the biggest 
deviating distance between the two paths of motion, geometrically. 

Doing the above mentioned we will have only 0.19 m deviation in the x direction and 
0.32 m in the y direction. The total distance of the two global centres of rotation is only 
0.37 m which is just 0.9% of the radius of rotation. 

To conclude, in the case of moving with a constant steering angle but a varying 
velocity, the resulted path of motion using the steady-state responses of the vehicle or 
solving the dynamic equations of the motion of the vehicle are definitely close enough to 
make us able to neglect the difference. So, it is suggested to at least in the case of 
complicated calculation of equations of motion to use the steady-state responses for 
solving the problem. 

Figure 11 shows the comparison between the two resulted paths of motion and  
Figure 12 shows the comparison between the movement of the centre of rotation of the 
two vehicles in their respective body frames. As mentioned earlier the movement of the 
two vehicles look the same for the passengers, that is why the two lines in Figure 12 are 
not recognisable. 
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Figure 11 The exact and approximate paths of motion (see online version for colours) 

 

Figure 12 The exact and approximate centres of rotation in the body frame (see online version  
for colours) 
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Nomenclature 

≡a x  acceleration 

ai distance of the axle number i from the mass centre 

[A] force coefficient matrix 

B(Cxyz) vehicle coordinate frame 

C mass centre 

Cα tire sideslip coefficient 

Cαf front sideslip coefficient 

Cαr rear sideslip coefficient 

Cr, · · ·, Dδ force system coefficients 

Cr proportionality coefficient between Fy and r 

Cβ proportionality coefficient between Fy and β 

Cδ proportionality coefficient between Fy and δ 

Dr proportionality coefficient between Mz and r 

Dβ proportionality coefficient between Mz and β 

Dδ proportionality coefficient between Mz and δ 

d frame position vector 

Fx longitudinal force, forward force, traction force 

Fy lateral force 

Fyf front lateral force 

Fyr rear lateral force 

g, g gravitational acceleration 

G(OXY Z) global coordinate frame 

I mass moment 

K stability factor 

m mass 

Mx roll moment, bank moment, tilting torque 

My pitch moment 

Mz yaw moment, aligning moment 

=p ϕ  roll rate 

q control variable vector 
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qi generalised coordinate 

=r ψ  yaw rate 

r position vector 

R radius of rotation 

Rw tire radius 
GRB rotation matrix to go from B frame to G frame 

Sκ = κ/δ curvature response 

Sβ = β/δ sideslip response 

Sr = r/δ yaw rate response 
2 / /=a xS v R δ  centripetal acceleration response 

Sy lateral velocity responses 

t time 

T tire coordinate frame 

Tw wheel torque 

u input vector 

,≡ vv x  velocity 

w wheelbase 

x, y, z, x displacement 

α sideslip angle 

β vehicle sideslip angle, attitude angle 

δ steer angle 

δf front steer angle 

δr rear steer angle 

κ = 1/R curvature 

λ eigenvalue 

ϕ roll angle 

= pϕ  roll rate 

ψ yaw angle 

= rψ  yaw rate 

ω angular velocity 

ω  angular acceleration. 


