Thermodynamic modelling of a proton exchange membrane fuel cell
by M. Ay, A. Midilli, I. Dincer
International Journal of Exergy (IJEX), Vol. 3, No. 1, 2006

Abstract: This paper presents the thermodynamic modelling of a proton exchange membrane (PEM) fuel cell at various operating conditions through energy and exergy analyses. In addition, the correlations and equations available in literature were used to determine thermodynamic irreversibilities in the PEM fuel cell at different operating conditions such as cell temperature, pressures of anode and cathode, current density, and membrane thickness as a design parameter. In accordance with the practical conditions, it is considered that the anode and cathode pressures range from 3 to 5 atm; cell temperature from 50 to 80°C. Also, the membrane thickness is chosen as 0.016, 0.018 and 0.02 cm, respectively. Depending on these data, thermodynamic irreversibilities throughout PEM fuel cell operation are estimated and discussed in detail. Consequently, it is found that thermodynamic irreversibilities in fuel cell increased with a rise of membrane thickness and with a decrease of the cell temperature and pressure.

Online publication date: Sun, 04-Dec-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com