An approximate numerical solution to the Graetz problem with constant wall temperature
by Ali Belhocine
International Journal of Computing Science and Mathematics (IJCSM), Vol. 8, No. 1, 2017

Abstract: The present set of themes related to the investigations of heat transfer by convection and the transport phenomenon in a cylindrical pipe in laminar flow, is commonly called the Graetz problem, which is to explore the evolution of the temperature profile for a fluid flow in fully developed laminar flow. A numerical method was developed in this work, for visualisation of the temperature profile in the fluid flow, whose strategy of calculation is based on the orthogonal collocation method followed by the finite difference method (Crank-Nicholson method). The calculations were effected through a FORTRAN computer program and the results show that orthogonal collocation method giving better results than Crank-Nicholson method.

Online publication date: Tue, 21-Mar-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com