Performance improvement of a buck converter using Kalman filtering
by Adriano Pereira; Cândido Duarte; Pedro Costa; Witold Gora
International Journal of Power Electronics (IJPELEC), Vol. 8, No. 2, 2017

Abstract: This paper presents a predictive current control algorithm for a synchronous buck converter using an extended Kalman filter (EKF) algorithm. The predictive approach avoids the need of current-sensing circuitry and provides insensitivity to Gaussian noise sources at the output of the buck converter, which is the same as the control loop input. The method requires a model for the buck converter, the EKF design, and current loop tuning. All these prerequisites are described in this work along with the implementation of the algorithm in a state of the art microcontroller. Simulation and experimental results show that while maintaining a good step response, the proposed method provides better results than standard methods when Gaussian noise is present at the output voltage.

Online publication date: Wed, 15-Mar-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Power Electronics (IJPELEC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com