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Abstract: The toxicology community is in the midst of a paradigm  
shift, moving from high-dose testing in animals with extrapolation to  
expected responses in humans to an in vitro approach based on a  
mechanistic understanding of key toxicity pathways. Tools such as cell-based 
assays that interrogate specific toxicity pathways, multi-omics technologies, 
bioinformatics, and computational systems modelling enable deeper 
understanding of human biology at the molecular level. Integration of these 
tools provides a powerful new approach to toxicity testing. The tools and 
technologies used in toxicity testing platforms are continuously emerging, 
evolving, and being applied in novel ways. The goal of this article is to:  
1) describe recently emerged technologies; 2) highlight advances in various 
existing platforms; 3) provide relevant examples of how these platform 
components are currently being applied in toxicity testing; 4) discuss 
advantages and limitations of each platform and identify gaps where further 
developments are required. 
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1 Introduction: scientific toolbox for 21st century toxicity testing 

Toxicity testing of industrial chemicals, pesticides, pharmaceuticals, consumer and 
personal care products, environmental substances and foods typically involves exposing 
animals to high doses of toxicants, observing adverse effects and extrapolating to 
expected human responses at lower doses (Krewski et al., 2010). These approaches are 
expensive (Bottini and Hartung, 2009), time-consuming (Hartung, 2009), use large 
numbers of animals (Taylor et al., 2008) and provide results that are only marginally 
relevant to human toxicology (Greaves et al., 2004). The low-throughput of current 
toxicity testing approaches has led to a backlog of more than 80,000 chemicals to which 
humans are potentially exposed, with largely unknown toxicity profiles (Kavlock and 
Dix, 2010). The pharmaceutical industry spends billions each year on research and 
development of new medicines. Approximately 30% of drugs tested in clinical trials fail 
owing to unanticipated and unacceptable toxicology profiles, and toxicity often cannot be 
fully assessed until late in the developmental stage (Kola and Landis, 2004). The 
prediction of drug toxicity early in the drug development process remains one of the 
greatest limitations to the successful development of safe pharmaceuticals, and new 
approaches are urgently needed to improve the efficiency of predictive toxicology 
(Anson et al., 2011). 

With progress in molecular, cellular and computational biology, new tools are 
available for studying the responses of cells, tissues, organs and the whole organism to 
drugs, chemicals and other environmental stressors at the molecular level. Advances in 
the life sciences are driving development of new technologies that are enabling 
researchers to study complex biological responses to chemical exposures in humans. The 
toxicology community is in the midst of a toxicity testing paradigm shift, moving from 
traditional high dose testing in animals to an in vitro approach based on a deep 
mechanistic understanding of key toxicologically-relevant cell-signalling pathways 
(toxicity pathways). Major components of this new approach include the use of  
cell-based assays (of human origin) to evaluate perturbations in toxicity pathways 
coupled with omics measurements and computational modelling in an integrated systems 
biology approach to address dose-response and in vitro-to-in vivo extrapolation (IVIVE) 
(National Research Council, 2007; Krewski et al., 2010). By implementing these new 
testing strategies one can accelerate the ability to: 

1 test chemical substances using a rational, risk-based approach to chemical 
prioritisation 

2 identify suitable drug candidates earlier in the developmental process 

3 provide test results that are more predictive of human toxicity than current methods 
(Schmidt, 2009). 

In addition, the new approach may significantly reduce costs and time required to 
conduct chemical safety assessments and could markedly diminish and potentially 
eliminate animal testing. 

Future platforms for toxicity testing will combine these new tools and technologies to 
provide novel approaches for evaluating adverse effects of chemicals. Future platforms 
may include primary cell cultures, human stem cells, three-dimensional (3D) culturing 
systems or organs-on-chips, cell-based assays that enable interrogation of specific 
toxicity pathways, quantitative high-throughput screening (HTS), cell-based imaging 
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technologies, multi-omics technologies, bioinformatics and visualisation tools, and 
computational systems modelling. These tools have the potential to facilitate 
development of predictive toxicology based on models built with existing in vivo data 
(animal and human), as well as new and existing in vitro and in silico data. Integration of 
these tools provides a powerful new approach to toxicity testing. It is now possible to 
map and annotate toxicity pathways, conduct systems analysis of pathway function and 
link pathway perturbations to cell and tissue responses, thereby enabling both  
dose-response modelling and IVIVE (McMullen et al., 2014; Molinelli et al., 2013). 

Given the rapid advances in biology and biotechnology, the tools and technologies 
that might be used in future platforms of toxicity testing are continuously emerging, 
evolving and being applied in novel ways. Although many of the tools and technologies 
listed above were reviewed in an outstanding article only a few years ago (van Vliet, 
2011), the field is evolving rapidly and recent significant developments across these 
platforms warrant another appraisal. The platform components described here are not an 
exhaustive list of all of the tools and technologies that scientists are using in their studies; 
rather, this article attempts to 

1 describe emergent technologies 

2 highlight significant contemporary technological advances in various existing 
platforms 

3 provide relevant examples of how these platform components are currently being 
applied to toxicity testing 

4 discuss advantages and limitations of each platform and identify gaps where further 
development is required. 

2 In vitro model systems 

As the toxicology community shifts from a reliance on animal testing in vivo to in vitro 
approaches, a key question arises: how well do these in vitro models represent in vivo 
systems? 

2.1 Cells and cell culture 

The process of growing and maintaining human cells in media in flat dishes [i.e.,  
two-dimensional (2D) cell culture] has been standard for more than 50 years. Cell 
culturing techniques have been improved through the use of specialised media,  
co-cultures and cell lines including immortalised cell lines and primary human cells 
(Bhogal et al., 2005). However, cells grown on 2D cell culture constructs may exhibit 
altered morphology and have limited cell-cell and cell-matrix interactions; thus, these 
systems generally provide a poor representation of the complex physiology and anatomy 
of 3D tissues (Yamada and Cukierman, 2007). Moreover, the selection of cell type and 
quality of cells used as the basis of an in vitro model system is of paramount importance; 
the cells need to serve as reliable representatives of intact human cells and human cellular 
systems and exhibit properties that enable testing and evaluating the compound of 
interest. Many existing in vitro assays do not meet these criteria as they rely on 
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immortalised cell lines or isolated primary cells. Immortalised cell lines provide a simple 
model for more complex biological systems. Immortalised cells offer several advantages 
as they 

1 can be grown indefinitely in culture 

2 easily cloned 

3 are cost-effective. 

However, as immortalised cells are genetically altered, they may exhibit responses to 
chemicals that are significantly different or perhaps clinically irrelevant from unaltered 
cells. 

Primary cells are isolated from human or animal tissues. Primary cell models have 
been developed for most human organs, including liver, kidneys, central nervous system 
and skin (Li et al., 2004). The major disadvantage of primary human cells is their limited 
availability owing to the requirement of a human or animal tissue donors, but other 
limitations include their variable quality, the high variation observed between donors, 
their phenotypic instability, and the potential loss of functionality when cultured 
(Combes, 2004). 

Stem cells are a promising alternative source of human cells for development of 
predictive in vitro models for toxicity testing. Embryonic stem cells (ES cells) are derived 
from the inner cell mass of a blastocyst, an early-stage embryo. Human embryonic stem 
cells (hESC) are pluripotent – that is, they may 

1 differentiate into any of the more than 200 cell types in the human body 

2 propagate almost endlessly 

3 be amenable to genetic modifications. 

Induced pluripotent stem cells (iPSC) are those that are derived from  
differentially-terminated adult cells and treated with a cocktail of transcription factors to 
‘induce’ them to return to their undifferentiated pluripotent state. These cells do not 
require the destruction of an embryo, enabling access to stem cell technology that avoids 
the legal and ethical constraints of hESC. Their plasticity enables the generation of an 
array of cell types and proliferation indicates that researchers have easy access to large 
numbers of cells. iPSC can be derived from any individual’s cells, opening the 
possibilities of creating cell lines that capture human genetic diversity for use in broad 
screening applications, creating disease-specific cell lines that may be used to study 
disease progression and pathology, and creating cells lines from individuals that may then 
be genetically altered for therapeutic applications and re-introduced to the donor, thus 
minimising the probability of donor rejection. 

Within the USA, there is a great deal of interest in the use of stem cells for drug 
discovery and toxicology testing purposes from both public and private sectors. The 
National Institutes of Health (NIH) invested $650 M in stem cell research in 2012, a 
significant funding increase compared to previous years. Other federal agencies, 
including the Environmental Protection Agency (EPA) and the Department of Defense 
(i.e., DTRA, DARPA) are also funding stem cell research. In 2012, DARPA, NIH, and 
FDA established the Microphysiological Systems Program (or ‘Organs-on-Chips’), a 
coordinated $145 M effort to create and integrate systems that utilise human primary or 
stem cell sources that represent ten major organ systems (Figure 1) (Sutherland et al., 
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2013). Seven states in the USA have established stem cell research institutions and 
programs that support stem cell research initiatives; in 2013 the California Institute of 
Regenerative Medicine (CIRM) awarded Cellular Dynamics International (CDI) a $16 M 
contract to create three iPS cell lines for each of 3,000 healthy and diseased donors. 
Large pharmaceutical companies are also interested in the use of stem cells for drug 
discovery applications that include target identification, disease modelling and cell 
replacement therapies. Functional iPS cardiomyocytes were used to study long QT 
syndrome while other iPS cells were generated from patients with Huntington’s disease, 
Parkinson’s disease, autism, and others (Itzhaki et al., 2011; Rubin and Haston, 2011). 
Fourteen of the top 20 pharmaceutical companies (70%) are already engaged in stem cell 
research initiatives (Wobus and Löser, 2011). Roche invested $20 M in a deal with 
Harvard University to use cell lines and protocols to screen for drugs to treat 
cardiovascular and other diseases. GlaxoSmithKline has signed a similar deal worth  
$25 M (Hook, 2012). 

Figure 1 Human on a chip 

 

Notes: chip Conceptualisation of a ‘human-on-a-chip’ system under development at MIT 
in collaboration with the Draper Laboratory and Zyoxel. The goal of the project is 
to create a versatile in vitro microphysiological system that incorporates and 
integrates ten individual engineered human organ system modules in an 
interacting circuit that mimics human physiological systems. The system will 
facilitate the assessment of candidate drugs, vaccines, biomarkers, and other 
chemicals to predict bioavailability, efficacy, and toxicity of therapeutic agents 
prior to clinical trials. Image used with permission from Draper Laboratory. 

A number of groups reported on the use of stem cells in toxicology for applications such 
as hepatotoxicity, cardiotoxicity, neurotoxicity, and reproductive toxicology (Anson  
et al., 2011; Chapin and Stedman, 2009; Davila et al., 2004; West et al., 2010). Although 
applications based on stem cells are evolving rapidly, their value in predictive toxicology 
assays has not yet been established. One important challenge is directing stem cell 
differentiation in vitro to generate pure populations of specific cell types that are fully 
functional. Although iPS hepatocytes exhibit liver-specific morphology and certain 
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functional characteristics, these cells do not yet fully reproduce all the functions of  
in vivo hepatocytes. Considerable effort is focused to achieve this, and even now these 
cells play an increasingly important role in toxicity testing. Assuming that human stem 
cells will ultimately yield more accurate predictions of human toxicology than current 
animal tests, these cells may find their greatest utility when combined with multi-omics 
and other high-content approaches to fully evaluate and understand how toxicants perturb 
normal cell signalling pathways. 

2.2 3D cell culture, tissue engineering, and organs-on-chips 

Despite the promise of stem cells for use as the basis of future in vitro model systems, at 
the moment, primary cell cultures employing 3D culturing systems are the most suitable 
in vitro models to represent in vivo conditions. 3D culture systems range from relatively 
simple aggregates of cell cultures embedded in a porous extracellular matrix to complex 
devices that integrate microfluidics and microelectronic technologies with human cells 
such as organs-on-chips. Growth of 3D cellular structures was facilitated using a variety 
of approaches such as multicellular spheroids, gel matrices scaffolds, and hanging drop 
plates as reviewed recently by Page et al. (2013), Haycock (2011), and Rimann and  
Graf-Hausner (2012). These constructs enable far more cell-cell interactions and 
enhanced intercellular signalling than 2D culture systems thereby providing a better 
representation of in vivo environments compared to 2D cultures. Several 3D primary cell 
models have shown promising results for identifying specific toxicity pathways and 
predicting in vivo toxicity (Leite et al., 2011; Pfuhler et al., 2014). The use of 3D cell 
cultures is markedly increasing in research areas including drug discovery, cancer 
biology, regenerative medicine and basic life sciences. Consequently, many 3D culture 
systems are now commercially available (Rimann and Graf-Hausner, 2012). Despite the 
significant advantages that 3D cultures confer over 2D systems, challenges still remain. 
Currently, 3D systems are not ideally suited or readily integrated into high-throughput 
applications although improvements in this area represent an active area of investigation 
(Deiss et al., 2013). Most of these models still do not adequately represent the biological 
characteristics and functions of tissues. 

Tissues are ensembles of cells from the same origin that carry out a specific function. 
Tissues represent an intermediate level of organisation between cells and organs. Over 
the past decade, investigators developed and used tissue-engineered constructs as in vitro 
models for a wide array of applications including toxicity and drug safety testing, testing 
of stents and other devices, tumour biology, wound healing, organ replacement and 
regenerative medicine (Cosgrove et al., 2006). 

Tissue engineering has made tremendous advancement in the field of  
tissue-engineered preclinical models. Such models now exist for many whole tissues 
including skin, muscle, cartilage, blood vessels, bone, bladder, liver, cornea, reproductive 
tissues, adipose, small intestine, neural tissues, kidney and cardiopulmonary systems 
(Gibbons et al., 2013). 

The next wave is to create 3D models with living cells and tissues that accurately 
simulate structure and function of human organs, such as lung, liver and heart. This field 
is an active area of research with groups reporting a range of organ-specific features for 
multiple organs, including liver, lung, kidneys, intestine, bone, and others (Huh et al., 
2011; Kamei et al., 2013). As described previously, significant investments are fuelling 
development of functionally-relevant 3D cellular microsystems that accurately reflect the 
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complexity of the tissue of origin, including genomic diversity, disease complexity and 
pharmacological responses. Studies are underway to produce representative human organ 
systems and to integrate those systems into a single chip-based system that will  
provide research tools for drug efficacy and toxicology screening of new  
molecular entities (Figure 1). Recent progress reports for all of the NIH-funded projects 
under the ‘Organs-on-Chips’ program can be found at: http://www.ncats.nih.gov/ 
research/reengineering/tissue-chip/tissue-chip.html. 

Looking beyond the ‘Organs-on-Chips’ efforts, it seems almost like science fiction to 
think about creating functional, implantable organs using 3D printing (i.e., bioprinting), a 
technique analogous to ink jet printing where instead of different coloured inks, the 
printer applies different materials and cells. However, scientists have been experimenting 
with 3D printing of human organs since the 1990s. The Wake Forest Baptist Medical 
Center’s Institute for Regenerative Medicine (http://www.wakehealth.edu/WFIRM) is 
leading a project to develop a ‘body on a chip’ (Esch et al., 2011). Similar to the  
‘Organs-on-Chips’ described above, the goal is to create a single integrated chip with 
miniaturised organ systems all connected into a single representative ‘human system’, 
which then serves as an in vitro platform for toxicity testing, disease modelling and other 
applications. For ‘body-on-chip’ efforts, organs will be miniaturised and printed onto the 
chip using Wake Forest Baptist’s unique 3D printer. 

3 In vitro assays and HTS 

Realising the full potential of the in vitro model systems described above will require  
in vitro assays that can be used to identify perturbations in toxicity pathways and 
molecular mechanisms linked to disease. Toxicity testing based on evaluation of pathway 
perturbations will require suites of in vitro tests that can identify the range of significant 
perturbations of human pathways that might occur as a result of chemical exposure, and 
provide the right level of detail and an ability to provide appropriate read-outs across 
different response levels (Andersen, 2010; Kavlock and Dix, 2010; Hartung and 
McBride, 2011). 

Efforts have focused to develop pathway-based assays using well-known toxicity 
pathways. The cellular stress pathway ensemble such as apoptosis, antioxidant responses, 
cytotoxicity, DNA damage responses, endoplasmic reticulum stress responses, heat 
shock, inflammatory responses, or mitochondrial damage consists of a limited and 
manageable number of pathways that are activated and respond in similar ways 
(Simmons et al., 2009). These pathways have been well-characterised at the molecular 
level. Using a suite of cell-based assays that cover various components of the pathways, 
compounds that activate the pathways based on certain key events can be studied and the 
mechanism-of-action (MoA) of such compounds may be elucidated. Further, since the 
pathways are activated and respond in similar ways, it may be possible to infer common 
mechanisms across multiple related pathways. Human nuclear receptor pathways such as 
estrogen, androgen, thyroid, aryl hydrocarbon, glucocorticoid, peroxisome proliferator, 
and others have been well-studied. These pathways play key roles in endocrine and 
metabolism pathways. In a similar way, suites of pathway-based assays directed towards 
components of each of these pathways may greatly accelerate toxicity testing studies. 
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HTS employs liquid robotics handling systems and computerised data processing to 
minimise manual inputs, reduce errors, and enable vastly improved speed, reliability and 
reproducibility. HTS is already used for toxicity testing and applied using different 
approaches. HTS can be used to screen a single compound against a large number of 
assays to identify toxicity pathways or to test a large number of compounds using a single 
assay analogous to candidate target selection in the pharmaceutical sector. A very 
impressive demonstration of the utility of HTS to toxicity testing comes from Tox-21 
Consortium (Tox21C). The Tox21C, a collaborative research effort between the EPA, 
NIH and FDA (http://tox21.org/), was established to develop and demonstrate HTS 
assays to assess biological activity and identify MoA of thousands of chemicals in order 
to provide a scientifically rigorous, data-driven process for chemical prioritisation and 
risk assessment (Kavlock et al., 2009). The ultimate goal of this collaboration is to 
establish in vitro ‘signatures’ of in vivo rodent and human toxicity by comparing data 
generated in HTS assays with the rich historical database generated by the National 
Toxicology Program (NTP) at the National Institute of Environmental Health Sciences 
(NIEHS) using traditional in vivo and in vitro toxicologic assays (Shukla et al., 2010). 
Tox21C has established a testing library of 11,000 environmental and pharmaceutical 
chemicals, an assay library comprising more than 80 biochemical and in vitro cell-based 
assays, and a dedicated robotics system, informatics databases and algorithms to analyse, 
visualise and model the data, along with targeted testing paradigms to examine predictive 
and in vivo relevance of the models created (Attene-Ramos et al., 2013). 

The EPAs ToxCast program is evaluating HTS for chemical safety assessments. 
Although EPA is also a partner in Tox21C, the ToxCast program’s primary goal is to 
develop HTS in vitro assays that provide predictive signatures of toxicity and to use those 
signatures to prioritise the large backlog of untested chemicals for additional testing (Dix 
et al., 2007; Martin et al., 2010; Judson et al., 2010). Both the Tox21C and ToxCast 
research programs have been conducted in phases. Table 1 summarises the progress of 
these programs to date. The associated references contain significant additional details, 
including lists of compounds tested, specifics on the assays used and preliminary data 
analysis and interpretation. All of the data from these efforts is now publically accessible 
via various databases, including the NTPs Chemical Effects in Biological Systems 
(CEBS), the US EPAs Aggregated Computational Toxicology Resource (ACToR), 
PubChem, and the NCATS Tox21C Chemical Browser, to encourage independent 
evaluations of Tox21C findings. Other programs (now all concluded) also examined the 
utility of HTS in vitro assays to identify chemical hazards and predict in vivo responses. 
These included Japan’s High Volume Production Program Challenge, and in Europe, the 
AXLR8 Consortium, the Sens-it-iv Consortium, ACuteTox, and carcinoGENOMICS. 
Table 1 Summary of HTS program phases 

Program Phase 1 Phase 2 References 

Tox21C 2,800 compounds,  
200 assays (2008) 

10,000 compounds,  
80 assays (2012) 

7, 54, 79 

ToxCast 309 chemicals,  
600 assays (2009) 

1,800 chemicals,  
800 assays (2012) 

26, 48, 64 

Despite the impressive advances in HTS screening technology, in vitro models and assay 
development, thus far these research efforts have yielded mixed results. Retrospective 
analysis shows that most HTS assays are based on the use of fluorescent probes or 
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reporter gene constructs. While these methods are universal and easy to apply, use of 
these molecular entities may influence or bias the physiological environment within cells 
(Möller and Slack, 2010). Thomas et al. (2012) performed a comprehensive analysis of 
the ToxCast phase 1 data to evaluate the predictive performance of in vitro assays. Data 
showed that in vitro assays used in ToxCast phase 1 screening are poorly predictive of  
in vivo responses. The review also suggests that one reason for observed poor predictivity 
is that the panel of assays used are not yet adequate for their intended purpose, and 
Thomas et al. (2012) also suggest that perhaps the best use of HTS of in vitro assays may 
not be in screening for in vivo hazard prediction for subsequent chemical prioritisation, 
but rather as a means to survey and understand MoA. The Tox21C program was also 
recently reviewed, and a number of significant challenges identified. These include 

1 limitations imposed on both assays and assay selection by the use of 1,536-well plate 
format 

2 issues associated with cell sourcing (e.g., limited availability of primary cells, few 
primary cells with reporter gene assays, special requirements of certain cells) 

3 currently no method for including metabolic activation in the HTS screens because 
liver S9 mix is toxic to cells when used beyond a few hours and the current HTS 
assay protocols do not include aspiration steps 

4 need for development of additional assays suitable for HTS format 

5 limited biological output where each assay yields 1–2 signals (Tice et al., 2013). 

In addition, the toxicology community is considering how to advance results from in vitro 
HTS assays for validation and acceptance by regulatory agencies. The current paradigm 
for validating new or revised tests for potential acceptance by regulatory agencies, which 
includes a formal process to evaluate reliability, relevance, and fitness for purpose of 
each assay, is slow and expensive – too slow to validate the many new HTS assays 
already in use in the research setting (Judson et al., 2013). New validation approaches 
were proposed and employed to validate new innovative assays more efficiently (Wind 
and Stokes, 2010). 

Conducting risk assessments from in vitro assays results requires a comprehensive 
understanding of how chemicals perturb normal cell-signalling pathways, and how those 
pathway responses relate to chemical exposure. Assay data generated from suitable  
in vitro model systems need to be placed into meaningful biological context, which 
requires a systems-biology level of knowledge of the mechanism(s) of action that 
chemicals employ, coupled with dose-response. Understanding MoA requires that one 
possesses a comprehensive map of toxicity pathways, and appropriate tools to detect, 
measure, and quantify perturbations to those pathways. 

4 Cell-based imaging technologies and high-content screening 

Modern molecular imaging technologies enable non-invasive visualisation of cellular and 
molecular processes occurring in living cells or animals. Molecular imaging in cell-based 
systems typically involves dosing cells with a compound of interest and analysing 
cellular structures and molecular components. Molecular imaging may be used for 
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1 measuring physical parameters such as cell size, surface area, cell morphology, and 
changes in concentrations of cellular products 

2 disease detection, drug development, and in vivo monitoring of therapeutic effects 

3 providing cellular, molecular and mechanistic information and could help to identify 
particular targets or pathways. 

The next generation of imaging tools includes innovative microscopy methods, 
ultrasound, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and 
Positron Emission Tomography (PET) (Kherlopian et al., 2008). Most of these tools have 
not yet found utility in toxicity testing. To date the most widely-used technologies 
include optical imaging techniques based on fluorescence or bioluminescence and high-
content imaging based on automated multicolour fluorescent microscopy. Developments 
in fluorescence microscopy are enabling new possibilities in high-resolution and 
molecular imaging both in in vitro and in vivo. Recent technical advances, as well as 
developments in the rapidly expanding spectrum of biological probes and fluorophores 
were reviewed by Wessels et al. (2010). 

The combination of automated HTS cell-based assays with automated high resolution 
microscopy is referred to as ‘high-content screening’ (HCS) or sometimes as high content 
analysis. HCS has been enabled by technical advances in both microscopy hardware and 
software. Hardware improvements include auto-focusing and automated sample 
positioning. Software advances include integrated software platforms that comprise 
automated image extraction and data management, sophisticated statistical analysis, 
improved image analysis algorithms and network access to additional informational 
databases (Zanella et al., 2010). 

In contrast to the assays similar to those used in Tox21C or ToxCast that average a 
single biological readout over thousands of cells, HCS acquires information from 
individual cells using multiple readouts simultaneously. HCS data extracted from cellular 
images include fluorescence intensity changes, fluorescence distributions, morphology 
and cell movement (Zanella et al., 2010). This information, when combined with other 
quantitative and qualitative imaging outputs including cell number, size and 
concentrations, provides a variety of parametric datasets that can be tailored to suit 
individual research needs. As HCS instrumentation has improved, it is finding increased 
utility in toxicity testing. Pharmaceutical companies are using HCS as a tool in lead 
candidate selection for target validation and hit qualification (Möller and Slack, 2010). 
HCS can identify cytotoxic compounds early in the process. In lead compound 
optimisation, HCS might help unravel the complexities of protein cascades to identify 
specific protein targets or other complexes, and facilitate toxicity and MoA studies. 
Abraham et al. (2008) developed an HCS assay in a HepG2 cell line that supports lead 
compound optimisation through predictive toxicology. HCS applications were noted for 
apoptosis, oxidative stress, human genotoxicity and neurotoxicity (Zanella et al., 2010). 

Additional research and development will continue to drive new HCS applications. 
Currently, the major limitations of HCS are the overall quality of the cells (many assays 
still use immortalised cell lines) or in the labelling approaches used (as previously 
discussed, fluorescent probes may alter the physiological environment of the cells). The 
relatively high costs of fully automated imaging systems continue to place the HCS 
technology out of the reach of the mainstream and are not yet suitable for real-time live 
cell imaging. The use of stem cells continues to hold promise for use in HCS and 3D cell 
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culture systems based on primary human cell co-cultures were adapted for HCS 
approaches (Evensen et al., 2010). 

5 Omics approaches 

The advent of ‘omics’ technologies such as genomics, transcriptomics, proteomics and 
metabolomics are challenging our fundamental understanding of human biology. In just 
the past few years, a number of previously unassailable beliefs such as 

1 DNA encodes mRNA and mRNA codes for proteins 

2 genome is static throughout an organism’s lifetime 

3 genome is identical in all cell types 

4 all of the necessary information for cellular function is contained within the gene 
sequence (Figure 2). 

have been called in to question by studies using omics approaches, with similar-scale 
revelations occurring in our understanding of the biology of mRNA, proteins and 
metabolites (Franklin and Vondriska, 2011). 

Figure 2 Central dogma 

 

Notes: The simple picture of biological information flow (DNA is transcribed to RNA, 
mRNA is translated to proteins, and the flow of information is unidirectional) is 
constantly challenged by omics discoveries that reveal significant information 
flow between biomolecules. For example, transcriptional regulation occurs by 
epigenetic changes (direct structural modifications to DNA), by protein-DNA and 
RNA-DNA interactions, and by small functional RNA molecules (siRNA, 
miRNA). The products of translation are subject to post-transcriptional, 
translational, and post-translational modifications. 

Systems toxicology – the integration of traditional toxicology approaches with  
high-throughput, high-content ‘omics’ technologies, cell-based assays, bioinformatics 
and computational tools – has the potential to facilitate development of predictive 
toxicology (Hege-Harrill and Rusyn, 2008). Traditional toxicology evaluates end points 
such as death, disease or observable changes in the organism or cells of the organism, 
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while ‘omics’ measurements are made across multiple levels of biological organisation 
and provide information that may be used to understand cellular processes as an 
integrated system rather than as a collection of disparate measurements. Although single 
‘omic’ approaches might be utilised to correlate a static molecular profile (e.g., 
metabolites) with physiological endpoints, it is increasingly clear that no single ‘omic’ 
approach, by itself, is sufficient to characterise the complexity of biological systems 
(Zhang et al., 2010; Schäfer et al., 2012). Although all proteins are based on mRNA 
precursors, the expression level of a given gene that codes for production of a protein 
does not correspond to the amount of protein produced, as the expression level alone does 
not account for post-translational modifications or other ways in which proteins are 
regulated. Investigators (Waters and Fostel, 2004; Lohr et al., 2012) are increasingly 
using integrated, multi-omic approaches to link exposures and outcome-specific patterns 
obtained from ‘omics’ profiles to 

1 identify toxicity pathways and MoA 

2 study the underlying cause of disease and specific chemical or drug targets 

3 identify signatures (biomarkers) of toxicity. 

Recently Snyder and colleagues (Chen et al., 2012) conducted extensive multi-omics 
(genomic, transcriptomic, metabolomic, and proteomic) profiling of a generally healthy 
person over 14 months and used that information to create an integrative personal omics 
profile (iPOP) – something akin to a personalised medicine profile. In an earlier study, 
Heijne et al. (2005) employed high-throughput genomics, proteomics and metabolomics 
measurements to examine molecular and biochemical pathways that control homeostasis. 
Several of the most common ‘omics’ are described in greater detail below. 

5.1 Genomics 

The completion in 2003 of the human genome sequencing project catalysed the 
application of genomics to understanding the effects of drugs, industrial chemicals and 
other environmental stressors on biological systems (Collins et al., 2003). Genomics is a 
scientific discipline that studies genome structure and function. Genome sequencing 
provides the specific order and identity of DNA nucleotide bases. Sequence information 
might be used to identify functional regions of the genome such as protein-coding genes, 
regulatory sequences, non-coding regions, and genomes may be compared to look for 
structural variations within DNA including single nucleotide polymorphisms (SNP), 
insertions, deletions, duplications, and copy number variations for differences between 
genomes. The most common structural variation is the SNP which are mutations in single 
nucleotides found throughout the genome that have a phenotypic consequence that are 
often associated with a disease. Consequently, considerable effort has been focused to 
identify these SNP ‘biomarkers’. 

Genomics technologies have developed and evolved at an amazing pace in recent 
years transforming our ability to catalogue and study the information stored in genomes. 
Conventional sequencing methods used for the past several decades to determine the 
order of these bases one by one have all but been replaced by next-generation sequencing 
(NGS) approaches that enable extensive parallel sequencing of billions of DNA 
molecules simultaneously. NGS has substantially reduced the time and costs of 
sequencing and dramatically increased sequence output. Advances in NGS have enabled 
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a host of new applications including the 1000 Genomes Project (a population-based 
whole genome sequencing effort to identify common genetic variants), the Cancer 
Genome Atlas (TCGA), an effort to accelerate our understanding of the molecular basis 
of cancer, and many other large-scale research efforts (Green and Guyer, 2011). Ultrafast 
DNA sequencing represents the third generation in DNA sequencing and many strategies 
are under development. These include sequencing-by-hybridisation, nanopore 
sequencing, and sequencing-by-synthesis. Third generation strategies and platforms were 
reviewed and compared but all of these approaches provide improvements over current 
methods including higher-throughput, faster turn-around times, longer read lengths, and 
reduced costs (Pareek et al., 2011). The biggest challenge for investigators using NGS 
approaches is managing the data that is generated. Data analysis tools are not yet able to 
effectively process the sheer volume of data that comes from sequencing although a lot of 
research effort is being directed towards improving these tools. NGS, coupled to other 
technologies such as DNA microarrays have enabled significant advances. Genome-wide 
association studies (GWAS) are one of the most commonly used approaches to compare 
genomes. A typical GWAS experiment might involve comparisons of large numbers of 
genomes from well-phenotyped individuals to look for structural variants including SNP. 
GWAS studies are focused largely on finding small differences between genomes. These 
discoveries direct research towards targeted therapeutics for diseases, and have given rise 
to entirely new disciplines such as epigenetics (looking for ways in which the DNA itself 
rather than the nucleotide bases or the sequence gets modified) which in turn affects gene 
expression and gene regulation. 

Hybrid technologies, like chromatin immune-precipitation coupled to DNA 
microarray (ChIP-chip) or sequencing (ChIP-seq) have been used to probe the  
genome-wide location and function of DNA binding proteins (Schäfer et al., 2012). 
These technologies also facilitate studies of DNA-protein interactions to unravel how 
various transcription factors and other proteins interact with DNA to regulate gene 
expression. RNA sequencing (RNA-seq) enables sequencing of RNA transcripts, a 
technique that vastly expands upon, and compliments, microarray-based gene expression 
studies. 

5.2 Transcriptomics 

Many genomics-based studies for toxicology use microarray technology to establish 
human genome-wide gene expression profiles by measuring all of the approximately 
100,000 mRNA molecules or ‘transcripts’ produced in a cell or a population of cells. This 
technique, referred to as transcriptomics, captures the characteristic and specific patterns 
of gene expression (i.e., ‘signatures’) that result from exposures to a given toxicant under 
a given set of experimental conditions for thousands of genes simultaneously and 
provides quantitative measurements of the dynamic expression of mRNA molecules in 
contrast to the static measure of DNA provided by gene sequencing. Cellular response to 
toxicant exposures for the entire gene compliment of the human genome (about  
21,000 genes) may be probed in a single microarray experiment. Gene expression 
profiling enables identification of specific genes that are differentially expressed as a 
result of changes in environmental conditions. Linking these gene changes to a 
chemically-induced phenotype (i.e., ‘phenotypic anchoring’) facilitates predictive toxicity 
and elucidation of MoA (Cui and Paules, 2010). Gene expression profiles between arrays 
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might be compared to evaluate the effects of different compounds, doses and exposure 
times across species, or between/within populations. Genes with common expression 
profiles may be identified using statistical methods (e.g., clustering techniques), leading 
to potential insights regarding common pathways, or MoA, assuming the clustered genes 
are functionally related (Afshari et al., 2011). Gene function and gene relationships 
within networks may be established and verified using gene knockout or silencing 
techniques. Gene expression signatures also enable toxicants to be grouped or classified 
into different toxicity classes, usually based on potency or MoA, and facilitate prediction 
of toxicity of chemically-related compounds. 

Gene expression profiles might guide identification of biomarkers of toxicity even at 
low exposure doses when no phenotypic changes were observed. Heinloth et al. (2004) 
demonstrated how the analysis of gene expression profiles from liver samples obtained 
from rats exposed to sub-toxic doses of acetaminophen indicated subtle cellular injury 
that was not detectable by histopathology or clinical chemistry methods. Such biomarkers 
of toxicity might identify potentially toxic drug candidates even when there are no 
indicators of toxicity in preclinical studies (McBurney et al., 2009, 2012). These 
biomarkers might serve as the basis for suites of in vitro assays to assist in 

1 compound screening 

2 to group chemicals by toxicity class or MoA 

3 to monitor drug therapies for safety and efficacy 

4 to monitor for exposures to environmental toxicants, even at sub-critical exposure 
levels. 

Suites of assays based on gene signature biomarkers have already been developed – one 
example is a set of gene signatures that distinguish genotoxic carcinogens from  
non-genotoxic carcinogens (Ellinger-Ziegelbauer et al., 2009). As a cautionary note, 
however, two studies by Kirkland et al. (2005, 2006) showed that in vitro-only 
genotoxicity tests, even combined as a battery of tests, yielded a high false-positive rate, 
and that if these test results were the sole source of decision making, many common 
products would have been erroneously rejected for commerce. These results underscore 
the need to fully utilise all available biological information like that obtained from 
proteomics and metabolomics and to combine that information with computational 
modelling. 

The recent technical advances of NGS enabled advances in transcriptomics. RNA 
transcripts are sequenced in a cell (RNA-seq) and used to study RNA expression patterns, 
point mutations, alternative gene spliced transcripts, post-transcriptional changes, gene 
fusion, SNP and other mutations and changes in gene expression. RNA-seq is 
increasingly being used to discover and study different types of RNA including miRNA, 
siRNA, lincRNA, and tRNA. Other important transcriptomic technologies include  
RT-PCR, which provide higher sensitivity and accuracy than microarrays. 

5.3 Proteomics 

The comprehensive study of the entire complement of proteins and their modifications 
(i.e., the proteome) of an organism to understand cellular processes is known as 
proteomics (Miller et al., 2014). Proteomics includes 
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1 global identification of all proteins in a sample (protein profiling) using discovery or 
‘shotgun’ proteomics 

2 quantitative measurement of protein expression (i.e., abundance) 

3 study of protein structures, including protein variations and modifications 

4 interactions of proteins and other molecules. 

The human proteome, estimated to comprise between 250,000 and one million proteins 
(along with their post-transcriptional, translational, and post-translational modifications), 
is highly dynamic varying not only over time but from cell to cell as well. Proteins exist 
in concentrations that may span nine orders of magnitude, making low abundance 
proteins extremely difficult to detect and characterise. Thus, proteomics measurements 
are far more complex and challenging compared to the relatively straightforward and 
somewhat static human genome and smaller, more tractable human transcriptome. 

Advances in mass spectrometry (MS) in just the past few years now enable routine 
identification and quantification of thousands of protein components in samples.  
Indeed, most proteomics studies are now performed using liquid chromatography/mass 
spectrometry (LC/MS) because of sensitivity, selectivity, accuracy, speed and throughput 
(Chen and Pramanik, 2009). A typical MS-based proteomics workflow is shown in 
Figure 3. For most proteomics experiments, the first step involves extracting protein(s) of 
interest from cells, tissues or other complex sample matrices. Sample preparation steps, 
which are determined by the overall objectives of the experiment, may include cell lysis, 
protein separation using gel electrophoresis, dialysis, and concentration. Because analysis 
of intact proteins by MS is extremely difficult, extracted and purified proteins are 
enzymatically digested into smaller constituent peptide fragments. Samples containing 
multiple proteins generate many thousands or hundreds of thousands of peptide 
fragments; therefore samples are subjected to fractionation or enrichment to further 
reduce complexity of analysis. The two most commonly employed approaches are: 

1 2D gel electrophoresis (2DGE), in which proteins are separated according to their 
isoelectric points and molecular mass, followed by mass spectrometric (MS) 
identification 

2 gel-free liquid-phase separation methods such as size-exclusion, affinity, and  
ion-exchange chromatography with automated tandem mass spectrometry  
(LC-MS/MS) (Miller et al., 2014). 

Although the relative merits of these two approaches have been debated, each has its 
advantages and limitations and both separation strategies are widely used (Manadas et al., 
2010). Fractions are then further separated and identified using LC and subsequently, 
peptides within fractions are ionised and passed to the mass spectrometer. The mass 
analyser filters the ions and records their mass-to-charge (m/z) ratio along with their 
relative abundance as peaks that populate a mass spectrum. Ions comprising specific 
peaks (precursor ions) are selected and further analysed by tandem LC (MS/MS) to 
generate characteristic fragment ions. The combinations of precursor m/z and their 
associated fragment ions are then compared to sequences of known peptide fragments 
and identified. Fragments are further assembled to enable identification of the protein 
sequence. 
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Figure 3 Proteomics workflow 

 

Notes: A typical mass-spectrometry-based proteomics workflow, applicable to both 
discovery and targeted proteomics. Proteins samples are prepared in a series of 
steps that are determined by the overall objectives of the experiment and may 
include cell lysis, pre-fractionation, or other separation, purification and 
concentration techniques. Proteins are enzymatically digested into their smaller 
constituent peptide fragments; peptide fractions are then further separated and 
identified using HPLC. HPLC peptide fractions (a single fraction is indicated in 
the red circle) are ionized and passed to the mass spectrometer. The mass analyser 
filters the ions and records their m/z ratio along with their relative abundance as 
peaks that populate a mass spectrum. Ions comprising specific peaks (precursor 
ions, indicated by the red circle in the LC/MS spectrum) are selected and further 
analysed by tandem LC (MS/MS) to generate characteristic fragment ions. The 
combinations of precursor m/z and their associated fragment ions are then 
compared to sequences of known peptide fragments and identified. Fragments are 
then quantified and may be further assembled to enable identification of the 
protein sequence. 

To date, most proteomics research has been conducted in an untargeted or discovery 
mode. This approach was used primarily to identify all proteins in a given sample 
(protein profiling), and more recently employed for differential quantification of the 
identified proteins (Tuli and Ressom, 2009). While this approach enabled significant 
advances to whole proteome identification and mapping, it suffers from significant 
shortcomings: 

1 the analysis of a complete proteome remains challenging, expensive and  
time-consuming and only a few labs have become truly expert in this approach 

2 due to the way in which precursor ions are selected, results often cannot be 
reproduced, even within the same lab using the same sample 

3 the approach does not enable identification of low-abundance proteins 

4 in any experiment designed to address a specific scientific question, a large numbers 
of ‘irrelevant’ proteins are identified, while some number of relevant proteins are 
missed (Domon and Aebersold, 2010). 

The emerging strategy of targeted proteomics enables researchers to detect, identify and 
quantify specific aspects of the proteome. In a targeted approach, the proteins of interest 
are known in advance and the MS is programmed to select only those certain signature 
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peptides using a technique known as selected reaction monitoring (SRM), sometimes 
referred to as multiple reaction monitoring (MRM). This approach enables greater 
sensitivity over discovery-based approaches, and enables detection of low-abundance 
proteins. It also provides vastly improved reproducibility such that multiple labs generate 
identical results (Marx, 2013). 

Within toxicology, proteomics research efforts (toxicoproteomics) have been largely 
directed towards identification of biomarkers with prognostic or diagnostic value, 
reflecting the fact that discovery (untargeted) proteomics has been the dominant strategy 
for the past decade. Biomolecules serve as early indicators of disease and used to monitor 
disease progression, pharmacologic therapeutic responses, and adverse responses to 
toxicants. Biomarker discovery and identification has largely focused on liver and kidney 
as a consequence of studies driven by the pharmaceutical sector, although  
disease-specific markers were also identified (van Vliet, 2011; Altelaar et al., 2013). 
Progress in biomarker discovery, identification and validation for toxicology has been 
slow. The slow progress does not reflect a lack of suitable biomarkers; but rather, 
inherent challenges of using an untargeted approach to discovery. Targeted proteomics 
enable rapid advances within in vitro toxicology, for both biomarker discovery as well as 
for expanding and developing our understanding of pathway-based molecular 
mechanisms of toxicity. Identification and quantitation of proteins in a sample may reveal 
that a signalling pathway is active; conversely, knowledge of signalling pathways might 
be used to map and model human responses to chemical exposures or to pharmaceuticals 
(Collings and Vaidya, 2008). 

5.4 Metabolomics 

Metabolites are small molecules, such as amino acids, lipids, organic acids and sugars 
that are intermediate or end products of metabolism. Unlike genes and proteins that are 
altered and subject to regulatory processes, metabolites 

1 are downstream products of gene expression (and also the end product of a toxic 
insult) 

2 directly reflect biochemical end products that are closer to the phenotype  
(van Ravenzwaay et al., 2007). 

Metabolomics is the study of metabolites and is used to identify all of the metabolites 
present in a given cell or organism at a specific time (global metabolite profiling) or to 
characterise specific metabolites with respect to concentration or other parameters. In 
2007, scientists completed the first draft of the human metabolome, cataloging 
approximately 2,500 metabolites, 1,200 drugs and 3,500 food components; this 
information is available in the Human Metabolome Database (http://www.hmdb.ca), 
although it is still incomplete (Wishart et al., 2007). 

Modern metabolomics research had its origins in nuclear magnetic resonance (NMR) 
spectroscopy but over the past two decowing due to high sensitivity, specificity, and 
ability of MS to detect and identify large numbers of metabolites. Gas 
chromatography/mass spectrometry (GC/MS) was used to study complex samples and 
later expanded into LC/MS, driven by the advent of affordable, accurate mass, time-of-
flight (TOF) instruments. The advantages and limitations of each technology have been 
the subject of numerous reviews (Bouhifd et al., 2013; Dunn and Ellis, 2005). 
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Metabolomics experiments are conducted using either targeted or untargeted strategies 
(Figure 4). Targeted metabolomics is a method used to determine the relative abundances 
and concentrations of a specific set of pre-selected metabolites, usually related to a 
specific metabolic pathway. While the method is quantitative and enables direct 
comparisons of metabolites between samples, it also requires that the exact structures of 
the metabolites under study are known and usually requires use of analytical standards. 
Therefore, targeted metabolite studies are limited to those metabolites catalogued in 
searchable mass spectra libraries such as available metabolomics databases, along with 
bioinformatics tools to facilitate data analysis and interpretation (Baker, 2011; Go, 2010). 
Untargeted (discovery) metabolomics methods are used to establish the metabolite profile 
of a given sample. Discovery metabolomics experiments involve examining an 
untargeted and unbiased suite of metabolites, finding the ones with statistically 
significant variations in abundance within a set of experimental versus control samples, 
and determining their chemical structure. An interpretation step allows the investigator to 
connect the metabolite with the biological process or condition. 

Figure 4 Workflow diagrams and discussion of experimental steps 

 

Notes: Mass-spectrometry-based metabolomics workflows, for targeted (upper) and 
untargeted (lower) applications. Targeted metabolomics is a method to determine 
the relative abundances and concentrations of a specific set of pre-selected 
metabolites, usually related to a specific metabolic pathway. Targeted applications 
typically employ triple quadruple LC/MS or GC/MS because the QQQ provides 
reliable, sensitive and reproducible quantitative analysis. The method requires that 
the exact structure of metabolites are known; therefore the instrument is first 
optimised against standard compounds in selected reaction monitoring. Sample 
metabolites are compared to standards and exact matches quantified. Untargeted 
metabolomics approaches usually employ TOF or QTOF mass analysers, as the 
instrument enables high resolution and accurate mass measurements for 
identification and characterisation, particularly with unknown compounds. 
Untargeted (discovery) metabolomics experiments involve examining an 
untargeted and unbiased suite of metabolites, finding the ones with statistically 
significant variations in abundance within a set of experimental versus control 
samples, and determining their chemical structure. An interpretation step allows 
the researcher to connect the metabolite with the biological process or condition. 
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Metabolomics has been expanding rapidly and applications are now routine in the areas 
of system biology, drug discovery, pharmaceutical research, early disease detection, 
toxicology, newborn screening, food safety and nutrition science. Metabolomics is 
finding broad acceptance and ready adoption in toxicology. Even as early as 2000, 
metabolomics was explored as a technique for rapid in vivo screening. The Consortium 
for Metabonomic Toxicology (COMET) performed NMR-based studies to predict liver 
and kidney toxicity using serum and urine samples from rodents; that data is still used 
today (Lindon et al., 2005). The same approach was extended more broadly and now  
in vivo metabolomics are routinely used in drug development to screen for potential toxic 
effects of drug candidates, as well as for MoA studies (van Ravenzwaay et al., 2012). 
Metabolomics is also being applied to in vitro toxicology. Ramirez et al. (2013) provided 
a long list of suggested in vitro metabolomics applications for toxicology and connected 
these suggestions to their actual implementation through active research efforts. Just a 
few of the application areas identified are: 

1 development of prediction models, where metabolite profiles obtained from training 
compounds of known toxicities could be compared to unknown compounds to 
predict their potential toxicity 

2 rank/prioritise compounds and sort or classify molecules with respect to their MoA 
or predicted toxicities 

3 use pathway-based knowledge to pinpoint potential drug/compound molecular 
targets and predict their MoA and map and model pathways of toxicity 

4 biomarker discovery. 

6 Data integration, analysis and interpretation: bioinformatics and 
visualisation tools 

Experimental omics approaches are high-throughput, data-driven, top-down approaches 
that generate large amounts of data (Zhang et al., 2010). Combining data from different 
platforms and assays across multiple experiments into a coherent approach that 
appropriately weighs and evaluates different data sources will be a challenging task and 
represents the next generation of pathway identification tools. 

The two main challenges for integrated systems toxicology are 

1 limitations of bioinformatics and visualisation tools to enable researchers to analyse 
and interpret their data within a meaningful biological context 

2 the overall processing, storage, and curation of data into databases such that data can 
be easily accessed, retrieved, shared, and archived. 

Bioinformatics tools will need to be built on novel, flexible architectures, to provide a 
broad foundation for joint analysis and visualisation of orthogonal data. 

Several key processes critical to pathway-based orthogonal analysis such as 

1 shuttling of different kinds of data between different software applications 

2 facilitating new custom visualisations 
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3 enabling statistical analyses involving pathway databases 

4 providing workflow and help facilities in order to ensure that the software is 
accessible to users with different levels of experience, must be considered. 

Integrative software and open-source data repositories provide the opportunity to share, 
reduce, and analyse data from multiple sources. One example is GeneSpring, a 
bioinformatics platform developed collaboratively by Agilent Technologies and Strand 
Biosciences, representing cutting edge in 

1 integrated ‘omics’ bioinformatics and visualisation 

2 providing comprehensive analytical and visualisation tools for datasets obtained 
from NGS such as transcriptomcs, genomics, metabolomics and proteomics using 
NGS sequencing, microarray, MS and NMR platforms. 

Heterogeneous data, such as gene expression, miRNA, exon splicing, genomic copy 
number, genotyping, proteomic, and metabolomic abundance can be combined into one 
project, allowing investigators to analyse and view results from different experiments in a 
single user interface. A comprehensive suite of statistical tests is provided to enable 
robust differential analysis on a variety of experimental designs, and clustering and 
classification algorithms facilitates pattern discovery. Intuitive graphical displays that 
employ a variety of plots, graphs and diagrams help users conceptualise and interpret the 
information in their data, and other interactive visualisation tools make it easy to 
import/export graphical images and to compare results from different experiments. The 
GeneSpring Pathway Architect module enables scientists to view and analyse curated 
pathway content, by leveraging WikiPathways, a publically-available resource for 
building, annotating and querying biological pathways. GeneSpring also incorporated 
Gene Ontology (GO) analysis, Gene Set Enrichment Analysis (GSEA), Gene Set 
Analysis (GSA) and network analysis tools. GeneSpring can be used in an individual 
desktop environment, or in a scalable, client-server collaborative environment. 

Given the complexity and sheer volume of data generated in ‘omics’ studies, there is 
an emerging need for comprehensive, publically-accessible databases. Databases such as 
CEBS, ACToR, PubChem, GO, Gene Map Annotator and Pathway Profiler, Science 
Signaling Connections Map, BioCarta, Reactome and KEGG are useful in this regard. Of 
the more than 1,000 biologically-relevant databases are already publically available, 
several hundred are specifically relevant to toxicology but many of those contain data 
that is not necessarily in a format that is directly useable (Judson, 2010). EPA’s ACToR 
is an example of a knowledgebase that brings together diverse types of information into a 
system where interrelationships of individual database elements including traditional 
toxicology, chemical structure information, high throughput screening data, molecular 
pathway analysis, chemical data repositories, peer reviewed published literature, and 
internal Agency databases can be explored and utilised (Judson et al., 2008). The ACToR 
database links information from more than 400 source databases and datasets on chemical 
identity. All published data associated with the ToxCast, ToxRefDB (a mineable, 
searchable database of pesticide toxicity data) and Tox21C programs are consolidated 
within ACToR and the knowledgebase is publicly accessible. Given the existing utility 
and advanced stage of development of ACToR, it might serve as the foundation upon 
which to build out a complete knowledgebase for all 21st century toxicology testing data 
and metadata. 
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7 Computational toxicology 

Computational toxicology is the integration of mathematical and computer models 
created using modern high-powered computational capabilities with toxicology and 
molecular biology to map, model and understand the biological circuitry of toxicity 
pathways to predict the toxicity of environmental chemicals and pharmaceuticals and 
their dose-response relationships (Kavlock and Dix, 2010; Krewski et al., 2011). 
Computational toxicology approaches range from simple models that use purely 
statistical methods to look for correlations between in vitro assays or calculated chemical 
descriptors and in vivo endpoints, all the way through to complex models that couple 
information from comprehensive high-content datasets with knowledge of network 
biology to identify toxicity pathways and evaluate pathway perturbations (Judson, 2010). 

Countless numbers of models have been developed for computational toxicology. A 
few of the most commonly-employed types are described here. Structure-activity 
relationships (SARs) are used to relate the structure of a chemical (molecule) and its 
biological activity (or toxicity). Quantitative structure-activity relationships (QSARs) 
provide a statistical relationship between the physicochemical properties of a chemical 
and its effects (toxicity and fate). Machine learning techniques ‘train’ computer systems 
to identify biologically-active compounds from those that are inert. Molecular modelling 
tools had their origins in computer-aided drug design (CADD). A classic example would 
be to use crystal structures of proteins to model a receptor site and then use that model to 
conduct in silico simulations of new structures to evaluate how well new structures might 
‘fit’ the receptor (Hartung and Hoffman, 2009). Molecular modelling tools provides an 
approach for estimating chemical activity when relevant data are not available to simulate 
critical processes in the specific mechanisms that lead to toxicity, and to model toxicity 
pathways (Kavlock et al., 2008). Physiologically-based pharmacokinetic (PBPK) models 
are by far the most often-used approach to model ADME (absorption, distribution, 
metabolism, and elimination) toxicokinetics. PBPK models are used for predictions of 
toxicologically-relevant internal or target dose from environmental and pharmacologic 
chemical exposures, and for IVIVE. Traditionally, these models have been used for 
performing extrapolations between different routes of exposure and between different 
species (Caldwell et al., 2012). Finally, computational models of cellular response 
networks are increasingly being used to predict dose-response behaviour. Omics 
approaches enabled a detailed characterisation of molecular signatures; however, a 
mechanistic understanding of the underlying biological processes requires an even more 
focused quantitative analysis of specific pathways and networks, with computational 
systems biology pathway models expected to play a key role in the process of studying 
the dynamic behaviour of toxicity pathways across dose and time domains. Some specific 
examples of this type of model were described by Bhattacharya et al. (2011) and found 
here http://www.thehamner.org/education-and-training/drm_workshop.html. 

The field of computational toxicology is advancing just as rapidly as all of the other 
scientific tools in toolbox for 21st century toxicity testing. Key developments include: 
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1 data from high-throughput, HCS assays to help to facilitate the identification of 
toxicity pathways 

2 development of new computational modelling tools that enable integration across 
multiple levels of biological organisation and provide information that might be used 
to understand cellular processes 

3 construction and curation of large-scale data repositories like those mentioned above 
(Kavlock et al., 2008). 

8 Making it happen: implementing 21st century approaches to toxicity 
through partnership and collaboration 

The landmark National Research Council (NRC) report ‘Toxicity Testing in the 21st 
Century: A Vision and a Strategy’, chartered a transformative change in toxicity testing, 
calling for the use of high-throughput cell-based assays (of human origin) to evaluate 
perturbations in key toxicologically-relevant cell-signalling pathways, coupled with 
‘omics’ measurements and computational modelling in an integrated system biology 
approach to address dose-response and IVIVE (NRC, 2007; Krewski et al., 2010). There 
are many projects underway now to develop new test methods and every day, new 
researchers are drawn to these kinds of studies in an effort to understand the relationships 
between human health and human biology. On a larger scale, at least three different 
approaches to implementation of the vision articulated in the report are currently 
underway: the US EPA ToxCast program together with the associated multi-agency 
Tox21C initiative, the human toxome approach, and the case study approach. Each of 
these approaches has strengths and contributes to the overall goal of modernising toxicity 
testing. 

The ToxCast/Tox21C programs seek to develop ways to predict potential toxicity and 
establish scientifically rigorous, data-driven, cost-effective processes for chemical 
prioritisation and risk assessment. As previously described, substantial progress has been 
made in the first two phases of these programs, although significant challenges remain. In 
addition to prioritising compounds for testing, this program has already combined 
analysis of dose-response evaluation of the in vitro screens with high-throughput 
dosimetry to develop high-throughput risk assessment tools (Judson et al., 2011; 
Wetmore et al., 2012). The output of these assessments is derivation of biological 
pathway altering concentrations (BPAC). The ‘Human Toxome’ project, a consortium of 
researchers led by Dr. Thomas Hartung at Johns Hopkins University, along with 
scientists at The Hamner Institutes, Agilent Technologies, Georgetown University, 
Brown University and the EPA ToxCast program received an NIH grant to begin 
mapping the totality of human toxicity pathways (i.e., the human toxome). The  
group has begun by mapping estrogenic pathways in human breast cancer cells using a 
combination of transcriptomics and metabolomics (http://altweb.jhsph.edu/news/current/ 
caatnihgrant.html). In the case studies approach, well-studied compounds that are known 
to affect specific pathways are being evaluated using a suite of in vitro model systems 
and specific technology platforms to assess dose-response and perform IVIVE (Judson  
et al., 2011). The Hamner Institutes, along with a variety of partners from the private 
sector spanning multiple sectors (e.g., chemical, personal care, ag/bio, technology 
providers) established the Toxicity Pathway and Network Biology Program. Under this 
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program, researchers at the Hamner have deliberately selected a small number of  
well-studied ‘prototype’ pathways and are using well-characterised compounds to map 
and model those pathways (Andersen et al., 2011). The program intends to use these case 
studies to demonstrate how the application of new understanding of toxicity pathways 
might be applied for human safety assessments through use of computational systems 
biology dose response models of pathway circuitry (Boekelheide and Anderson, 2010). 
The case study approach has several advantages but the most significant is that this 
approach is most likely to accelerate the adoption of new toxicity testing approaches and 
enable us to quickly ‘learn as we go’ and adjust/adapt our efforts in response to what is 
learnt. 

9 Conclusions 

When fully implemented, the new approaches to toxicity testing might significantly 
reduce the cost and time required to conduct chemical safety assessments and markedly 
reduce and potentially eliminate high-dose animal testing. An integrated systems 
toxicology approach offers large scale potential benefits to human health, translational 
medicine, energy and the environment. The toxicology research community working to 
advance these efforts is establishing the foundation for a full-scale effort to implement 
the NRC vision of toxicity testing. 
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