A novel switching group-size GA based on HRL
by Shu Ying-Li; Ke Wen-De
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 11, No. 4, 2016

Abstract: A novel switching group-size genetic algorithm (GA) based on Hierarchical Reinforcement Learning (HRL) is proposed to improve the global optimisation performance by accelerating the convergence speed of genetic algorithm and improving the computational efficiency. In the early stage of the evolution, the group can be expanded to increase diversity, while the group should be downsized to protect the more adaptive individuals in the latter stage. Chromosome crossover operation in the HRL algorithm is regarded as behaviour. Choosing the optimal method according to the specific evolution of the chromosome reflects the optimisation selection. At the same time, abstract and hierarchical system is used to decompose the problem to multilevel sub-task space. The convergence speed is improved by learning strategically in each sub-task space and multiplexing the sub-strategy between layers. The experiment has proved the validity of the algorithm.

Online publication date: Thu, 16-Feb-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com