A computational flow model of oxygen transport in the retinal network
by Jihene Malek; Ahmad Taher Azar
International Journal of Modelling, Identification and Control (IJMIC), Vol. 26, No. 4, 2016

Abstract: The retina's high oxygen demands and the retinal vasculature's relatively sparse nature are assumed to contribute to the retina's specific vulnerability to vascular diseases. This study has been designed to model the oxygen transport in physiologically realistic retinal networks. A computational fluid dynamics study has been conducted to investigate the effect of topological changes on the oxygen partial pressure distribution in retinal blood vessels. The Navier Stokes equations for blood flow and the mass transport equation for oxygen have been coupled and solved simultaneously for the laminar flow mass transfer problem. The mean oxygen saturation of a healthy eye has been 93% in retinal arterioles and 58% in venules. The arteriovenous difference has been 35%. For a patient with a central retinal vein occlusion (CRVO), the mean oxygen saturation has been 33%. The findings from the analysis are generally consistent with a lot of previous experimental measurements and clinical data available in the literature, demonstrating the efficiency of our model for predicting the oxygen distribution in the retinal networks. This paves the way for a new research and applications for simulating inaccessible cases from experimental studies.

Online publication date: Sat, 24-Dec-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com