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Abstract: Traditional Screening Designs, such as resolution III 2k-p fractional 
factorials are used routinely in the initial stages of process development. These 
designs are used to determine which process variables have the largest effect on 
process outcomes. Once a screening design is complete and the data are 
analysed, follow-up experiments are normally required in order to develop 
useful prediction equations involving the important variables and to identify the 
optimal process operating conditions. Recently developed definitive screening 
designs allow researchers to identify important variables and optimum process 
conditions after one set of experiments, eliminating the need for follow-up 
experiments. This leads to the question: What is now the role of traditional and 
definitive screening designs in process optimisation? We share our insights 
gained from using both of these designs in developing a process to produce 
catalyst support material to shed light on these questions. 
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1 Introduction 

Good manufacturing processes should rely on a sound understanding of the impact of 
various process inputs upon the efficiency of process operation and the critical 
characteristics of the resulting product. For example, the US Food and Drug 
Administration’s Current Good Manufacturing Practices (CGMPs) initiative for the 21st 
century emphasises this approach (US Food and Drug Administration, 2004, 2011). This 
is normally done in a two-step process where an initial screening design is used to 
identify important process inputs, and further follow-up experiments are conducted with 
the important factors (according to a response surface design) to define the optimal 
operating conditions (Abu-Absi et al., 2010). 

Box (1999) previously elucidated the role of experimental designs and response 
surface methods in a process of sequential learning to innovate or design a manufacturing 
process. This process usually starts with a two-level screening design followed by a 
factorial design with the important factors in order to estimate two-factor interactions. 
The method of steepest ascent can be used, if needed, to move to a new location in the 
factor space. Finally, follow-up experiments can augment the two-level factorial design 
and expand it to a central composite design that will provide data to estimate the full 
quadratic model and identify optimum operating conditions. Normally, it is 
recommended that no more than 25% of the research budget be allocated to the initial 
screening experiments since it may be discovered that inappropriate factor levels were 
chosen or that one or more factors, later recognised as important, were not included in the 
design. For this reason, very efficient two-level resolution III fractional factorial or 
Plackett-Burman designs have been traditionally recommended for initial screening 
experiments. 

Recently developed three-level definitive screening designs (Jones and Nachtsheim, 
2011, 2013; Xiao et al. 2012) provide main effects’ estimates that are unbiased by 
quadratic effects and linear by linear interaction effects. In addition, no two linear-by-
linear interactions are completely confounded. These designs are very efficient. They 
require only one run more than twice the number of factors in the design, and when there  
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are at least six factors in the design, they permit efficient estimation of a full quadratic 
response surface in any subset of three factors or less. For this reason, developers of these 
designs suggest that their use may eliminate the need for follow-up experiments and that 
one design can be used for both screening and response surface exploration. Since there 
is no defining relation, the alias pattern for a definitive screening design, which includes 
partial confounding among two-factor interactions and among two-factor interactions and 
quadratic terms, cannot be listed simply like the alias pattern for a regular fractional 
factorial design. It can be best visualised by looking at the colourmap of the correlations 
computed from the design matrix that includes main effects, quadratic effects, and two-
factor interactions (Jones and Nachtsheim, 2011). These designs are only described 
briefly (if at all) in the recent reference books on experimental design. 

Data from definitive screening designs cannot be analysed using a saturated set of 
orthogonal contrasts (the normal practice with regular fractional factorial designs). The 
interaction effects are partially confounded with quadratic effects and other interaction 
effects. The data can be analysed using regression subset procedures similar to those used 
to detect interactions with Plackett-Burman designs or orthogonal arrays (Hamada and 
Wu, 1992; Chipman, Hamada and Wu, 1997; Lin, 1999; Lawson, 2002). Jones and 
Nachtsheim (2011) suggested a simple procedure using a forward stepwise regression 
that enforces effect heredity (Hamada and Wu, 1992). They recommend all terms in the 
quadratic response surface model be used as candidate terms. To enforce effect heredity, 
they modify the forward stepwise regression in the following way. If an interaction or 
quadratic effect is the next term to enter the model, then the main effect(s) that define that 
quadratic or interaction term should also be added to the model (if they are not already in 
the model). This modified forward stepwise procedure is available using the combine 
option in the forward stepwise regression in JMP or with the fhstep function in the  
R package daewr (Lawson, 2015a). Some may argue that the stopping rules used in 
forward stepwise regression are a little more subjective than graphically examining a set 
of orthogonal contrast effects as is normally done when analysing the data from a regular 
fractional factorial design. Therefore, those who are accustomed to using and analysing 
data from regular fractional factorials may feel uncomfortable with the new screening 
designs. 

Can adequate screening and response optimisation really be accomplished after 
conducting one set of experiments according to a definitive screening design? If so, what 
is the role of traditional resolution III two-level screening designs and sequential follow-
up experimentation as recommended by Box and others? The answer to these questions 
will depend upon the unknown but underlying model that generates the data. By choice 
of a simulation model, either the traditional sequential approach to optimisation, or the 
use of a definitive screening experiment could be made to appear more efficient in a 
simulation study. Rather than trying to give conclusive answers to these questions, we 
attempt to shed some light on the quandary by sharing our experience in using both 
approaches in characterising the process of synthesising Al-modified anatase TiO2 
catalyst supports (Olsen et al., 2014). 

TiO2 is an excellent support material for metal and metal oxide catalysts in oxidative 
synthesis and pollution control reactions, such as CO oxidation at low temperatures, low- 
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temperature synthesis of hydrogen peroxide, complete oxidation of volatile organic 
compounds, etc. Each application of TiO2, as a catalyst support, requires different anatase 
or anatase/rutile properties such as, pore volume and pore diameter, while maintaining a 
large surface area. Therefore, prediction equations had to be determined that could 
identify process input values that would be appropriate for various applications. 

The study began utilising a traditional 2k-p fractional factorial design to identify 
important process inputs because it could be easily augmented to form a central 
composite design in the factors found to be important. This would allow a quadratic 
model to be fit characterising the impact of process inputs upon the important anatase or 
anatase/rutile properties of TiO2. However, after completion of the experiments and 
analysis of the data, it was discovered that many additional follow-up experiments could 
be required (using the traditional approach) before a quadratic model could be fit to the 
data. Since the number of follow-up experiments required to form a central composite in 
the important variables could be even greater than the number of experiments required by 
a definitive screening design of Jones and Nachtsheim (2011), it was decided to start over 
using this new design rather than completing the necessary follow-up experiments to the 
2k-p design. This allowed us to make a practical comparison of traditional screening and 
sequential follow-up with the definitive screening design. Based on the results of this 
comparison, we give our insights regarding the traditional approach and the newer 
definitive screening designs in process development and process improvement. 

The remainder of this article is organised as follows. Section 2 describes the TiO2 
synthesis process and the traditional 2III

10-6 fractional factorial design used in the initial 
screening experiment. Section 3 describes the models obtained from the analysis of the 
fractional factorial design. Section 4 describes alternative approaches to follow-up 
experiments that could be used for sequential augmentation of the initial design. Section 
5 shows the definitive screening design, and Section 6 describes results obtained from 
analysing the data. Section 7 compares the information obtained from the initial 
fractional factorial to the information obtained from the definitive screening design. 
Section 8 compares the information obtained from the definitive screening design to what 
may have been obtained from the initial fractional factorial design plus sequential follow-
up experiments. In the final section, we discuss the insights we have gained in attempting 
to use the traditional sequential screening-optimisation, and definitive screening design 
on the same process. 

2 Synthesis process and fractional 2k-p design 

The process of synthesising TiO2 in the lab is a 4-step process as illustrated in Figure 1. 
Steps 3 and 4 could either be Rinse followed by Calcine or Calcine followed by Rinse. 
The starting materials were TiCl4, Al(NO)3⋅9H2O, and NH4HCO3 (ABC). At each step of 
this process, there were at least two factors that could be varied, and at the end of the 
process, the resulting material was analysed to determine the surface area, pore volume 
and pore diameter. 
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Figure 1 Process for synthesising TiO2 in the lab 

 

Table 1 shows the factors that could be varied at each step of the synthesis process and 
the two alternative levels for each factor. At the mixing step, the levels of mixing order 
are defined as follows: Ti/Al means that TiCl4 and Al(NO)3⋅9H2O were mixed together in 
a mortar and pestle for 1 min after which NH4HCO3 (ABC) was added and mixed for an 
additional minute; Al/ABC means that Al(NO)3⋅9H2O and NH4HCO3 (ABC) were mixed 
together in a mortar and pestle for 1 min after which TiCl4 was added and mixed for an 
additional minute. Next, the amount of distilled H2O indicated by the level of factor C 
was added at the rate indicated by factor B, and the slurry was mixed an additional 5 min 
to form a stabilised anatase precursor. Factor D, the order of rinsing, is illustrated by the 
two possible paths in Figure 1. Using the upper alternative path, the material was first 
rinsed with distilled water using a vacuum filtration system and then immediately 
calcined. Using the lower alternative path in Figure 1, the material was first calcined and 
then rinsed with distilled water using a vacuum filtration system. In the drying step, both 
the time and temperature of drying were varied. In the calcination step, temperature, time 
and ramp rate were varied. Finally, Factor K (the mole % Al) is determined by the 
amount of the starting materials used in the mixing step. 

Table 1 Factors and levels for the fractional factorial design 

Factor Low level (−) High level (+) 

Mixing step 
A Mixing order Ti/Al Al/ABC 
B Speed of H2O addition Slow Fast 
C Amount H2O (ml) 7 22 
D Order of rinsing Rinse then calcine Calcine then rinse 
Drying step 
E Drying time (h) 3 24 
F Drying temperature (°C) 25 100 

Calcination step 
G Calcination ramp rate (°C/min) 2 20 

H Calcination temperature (°C) 400 700 

J Calcination time (h) 2 20 
K Mole % Al 5 22 
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Using the conventional wisdom that the screening design should take no more that 25% 
of the total resources, we decided to start with a 16-run 2III

10-6 fractional factorial design. 
Using the factor labels in Table 1, the design generators were E=ABCD, F=BCD, 
G=ACD, H=CD, J=ABD and K=ABC. The alias structure up to two-factor interactions is 
shown in Table 2. 

Table 2 Alias structure for estimable effects 

Factor 
Confounded 

Label Two-factor interactions 
Mixing order A EF + GH 
Speed of H2O addition B FH + EG 
Amount of H2O C DH + EJ 
Order of rinsing D EK + CH 
Drying time E DK + CJ + BG + AF 
Drying temperature F BH + AE 
Calcination ramp G BE + AH 
Calcination temperature H BF + JK + CD + AG 
Calcination time J HK + CE 
Mol % Al K HJ + DE 
 AB CK + DJ + EH + FG 
 AC BK + DG + FJ 
 AD BJ + CG + FK 
 AJ BD + CF + GK 
 AK BC + DF + GJ 

Although this is a resolution III design (with two-factor interactions confounded with 
main effects and other two-factor interactions), it was hoped that by running these 16 
experiments the factors that had the largest effects could be identified, and follow-up 
experiments could focus on the important factors. Table 3 shows the design and resulting 
responses (properties of the resulting catalyst support material) in standard order. The 
actual experiments were performed in a random order to prevent biases from 
uncontrollable variables such as the reaction temperature. 

Table 3 Fractional factorial design and results 

Run A B C D 

Factors 

G H J K 
Surf.  

area (m2/g) 

Responses 

E F 
Pore vol.  
(cm3/g) 

Pore Dia.  
(nm) 

1 − − − − + − − + − − 50 0.11 6.4 

2 + − − − − − + + + + 67 0.12 5.7 

3 − + − − − + − + + + 104 0.21 6.1 

4 + + − − + + + + − − 61 0.16 7.6 

5 − − + − − + + − − + 375 0.33 3.5 
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Table 3 Fractional factorial design and results (continued) 

Run A B C D 

Factors 

G H J K 
Surf.  

area (m2/g) 

Responses 

E F 
Pore vol.  
(cm3/g) 

Pore Dia.  
(nm) 

6 + − + − + + − − + − 332 0.35 3.5 

7 − + + − + − + − + − 203 0.2 3.7 

8 + + + − − − − − − + 177 0.31 6.5 

9 − − − + − + + − + − 123 0.36 10.1 

10 + − − + + + − − − + 369 0.31 3.6 

11 − + − + + − + − − + 169 0.52 15.6 

12 + + − + − − − − + − 150 0.49 12.3 

13 − − + + + − − + + + 124 0.41 12.1 

14 + − + + − − + + − − 95 0.46 17.3 

15 − + + + − + − + − − 308 0.84 14.9 

16 + + + + + + + + + + 94 0.41 15.3 

3 Results of analysis of the fractional 2k-p design 

Figures 2, 3 and 4 show Pareto charts of the orthogonal estimated effects (Lenth, 2015) 
upon the three responses (or catalyst support properties that require different values for 
different catalyst applications). These figures were produced by the JMP 
Analyze/Modeling/Screening menu using the method of Lenth (1989). The bars that 
protrude beyond the solid vertical error lines on the left or right side of the table, or 
whose P-values are less than 0.10, were judged to be significant. Models for each 
response were refit including only the largest three effects in Figures 2, 3 and 4, and any 
insignificant terms were then dropped to reach the final models shown in Table 4. 

 
Figure 2 Effects on surface area 
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Figure 3 Effects on pore volume 

 

 
 
 
 
 
 
 

Figure 4 Effects on pore diameter 
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Table 4 Final models for fractional factorial 

Term Estimate STD error t Ratio Prob > |t| 

Effects for surface area 
Intercept 175.0625 20.77128 8.43 <0.0001* 
H −62.1875 20.77128 −2.99 0.0104* 

F 45.6875 20.77128 2.20 0.0465* 
Adjusted R2 = 0.44 
Effects for pore volume 
Intercept 0.349375 0.029538 11.83 <0.0001* 
D 0.125625 0.029538 4.25 0.0009* 
C 0.064375 0.029538 2.18 0.0483* 
Adjusted R2 = 0.58 
Effects for pore diameter 
Intercept 9.0125 0.70966 12.70 <0.0001* 
D 3.6375 0.70966 5.13 0.0002* 
H 1.6625 0.70966 2.34 0.0357* 
Adjusted R2 = 0.58 

Factor H (Calcination Temperature) and D (Order of Rinsing) appear to have the largest 
effects, and only factor A (Mixing Order) appears to have a negligible effect for all three 
responses. Only two factors were significant in the final models for each response, but 
they were not the same two factors in each model. Although all the terms in the simple 
final models were significant at the 0.05 level, the adjusted R2 was less than 0.60 for all 
three models. Furthermore, the range of predicted pore volumes (within the experimental 
region), while maintaining a large surface area, was not wide enough for many catalytic 
applications. Therefore, better models were sought for the data.  

4 Alternative approaches to follow-up experiments 

One way to make the models better would be to include interaction terms or expand the 
models to the full quadratic models (including quadratic effects and linear by linear 
interaction terms) in the factors found important. However, this would require additional 
follow-up experiments. There are different alternative approaches for determining a list 
of follow-up experiments depending on the assumptions made. 

One approach would be based on the assumption that the four factors in all the final 
simple models in Table 4 (i.e., C - Amount of H2O, D - order of rinsing, F - drying 
temperature, and H - calcination temperature) were the only ones important, and that the 
other six factors could be ignored. Ignoring all but C, D, F and H in the original fractional 
factorial design, the main effect C is still completely confounded with the DH interaction, 
the main effect for D is still completely confounded with the CH interaction, and the  
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main effect for H is still confounded with the CD interaction. These three main effects 
could be made completely orthogonal to the two-factor interactions they are confounded 
with by augmenting the design with an additional block of 16 experiments with the signs 
on factor C reversed (Box, Hunter and Hunter, 2005). Running these 16 experiments 
would result in a full 23 factorial design in factors C, F and H, at each level of Factor D, 
with half the runs replicated. This would allow unconfounded estimates of the main 
effects for C, F and H and all two-factor interactions among these three factors. Next, a 
third block of experiments could be run that included axial and centre points for factors 
C, F and H at each level of Factor D. This would allow fitting a full quadratic model in 
factors C, F and H at each level of D (Order of Rinsing). This approach would require 
approximately 34 follow-up experiments. 

However, if the experimenter was uncomfortable in assuming that all factors except 
C, D, F and H had negligible effects after the initial 16 experiments, another approach 
could be taken. First, the original 16-run fractional factorial could be augmented with a 
mirror image design (signs reversed on all 10 factors Lawson, 2015b). This would allow 
all 10 main effects to be estimated independently of the strings of the two-factor 
interactions they are confounded with. In addition, the confounded strings of two-factor 
interactions beginning with AB, AC, AD, AJ and AK (shown in Table 2) could be 
estimated. More data would be available to determine which of the 10 factors and two-
factor interactions were important. If the significant contrasts in the combined 16-run 
fractional factorial plus mirror image design could be interpreted (by the effect heredity 
principle (Hamada and Wu, 1992) to represent a few main effects and interactions among 
them, then the combined design could be augmented with axial and centre points (at each 
level of Factor D) to allow fitting quadratic models in the important factors at each level 
of D. This would require about 32–34 follow-up experiments. 

However, if no clear interpretation of the significant effects were possible using the 
effect heredity principle, additional experiments would be necessary to separate 
confounded strings of interactions before adding centre points and axial points. For 
example, if after the analysis of the original and mirror image designs, main effects B, C, 
D, F and H were found to be significant, in addition to the two confounded strings of 
two-factor interactions AJ+BD+CF+GK and BF+JK+CD+AG, then the effect heredity 
principle would not help to determine whether the first string of two-factor interactions 
represented BD or CF (since the four main effects B, C, D and F were all significant). 
Additionally, the effect heredity principle would not help to determine whether the 
second string of interactions represented BF or CD, again since the main effects B, C, D 
and F were significant. Therefore, additional experiments would be required to allow 
separate estimates of BD and CF, and BF and CD, before the design could be augmented 
with centre points and axial points. One way this could be done is to complete another 32 
experiments folded on factor B, or factor C or factor F (Montgomery and Runger 1996). 
This would allow independent estimation of BD, CF, BF and CD. A smaller set of 
follow-up experiments that would allow separate, but not independent, estimates of these 
four interactions could be obtained by selecting a subset of additional runs to maximise 
the determinant of X′X, where X is the model matrix (i.e., containing B, C, D, F, H, BD, 
CF, BF and CD) for the combined set of runs (Dykstra, 1971). After adding centre and  
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axial points to allow fitting a quadratic model (at each level of D - Order of Rinsing), as 
many as 40–68 follow-up experiments would be required using this approach. 

Another consideration in planning follow-up experiments was the fact that the range 
of predicted pore diameters (with high surface area) derived from the final simple models 
fit to the data from the screening experiment was not wide enough. That may have been 
due to the fact that quadratic effects were not in the final models or that range of 
important factor levels in the original experiment were too narrow. Therefore, it was also 
desirable to expand the range on the suspected important factors in follow-up 
experiments. This could be done using the two approaches above by expanding the range 
of the factors found to be important in the axial portion of the design. However, if all 
factors but C, D, F and H were held constant in the follow-up experiments, the range 
could only be expanded for factors C, F and H. If all factors were varied in the follow-up 
experiments, it is still possible that the range on some important factors would not be 
increased. If the range of a factor in the initial fractional factorial portion of the design 
(including follow-up experiments) was too narrow, its effect might not be detected due to 
the experimental error. As a result, axial points would not be added for this factor. 

Due to the uncertainties associated with augmenting the original 16 experiments, we 
decided to try a different approach. Jones and Nachtsheim (2011, 2013) had recently 
published papers describing a new class of screening designs called definitive screening 
designs. These designs incorporate three levels on each quantitative factor (allowing for 
possible quadratic effects) and are efficient for screening a large number of factors. Only 
2k+1 experiments are required to study k quantitative factors and only 22–24 experiments 
are required to study 8 quantitative factors and 2 two-level factors. Since all the factors, 
except A and D in Table 1, are quantitative, it was decided to plan a separate definitive 
screening design in factors B, C, E, F, G, H, J and K at each level of the discrete factor D 
(Order of Rinsing). Factor A (Mixing Order) was held constant since it seemed to have 
the least effect on any of the responses in the initial screening experiment. This would 
require only 2(8) + 1 = 17 runs in each of the two designs, or a total of 34 additional 
experiments. This would be no more than required by either of the two more traditional 
approaches to augmenting the initial 16 experiments, and the range of settings on the 
factors felt to be important by the experimenters could be widened. 

When designing a two-level screening design, like a regular fractional factorial 
design, an experimenter should be bold in choosing factor levels that are separated widely 
so that the effect of the factor can be detected above the level of the random experimental 
error. However, if the relationship between the response and a factor is non-linear and 
can be approximated by a quadratic function, choosing a range of factor levels that is too 
wide can in some cases reduce the power of detecting the linear effect above the 
experimental error, as shown in the left side of Figure 5. If, on the other hand, a three-
level design (like the definitive screening design) is used, the probability of this 
happening is greatly reduced since both linear and quadratic terms can be fit. Therefore, 
when using a definitive screening design, an experimenter has more to gain and less to 
lose by choosing a wide range of factor levels. 
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Figure 5 Effect of curvature on effect 

 

5 Definitive screening design 

A 17-run definitive screening design was run using the DRC (dry→rinse→calcine) 
procedure shown in the top branch of Figure 1. The design and resulting data are shown 
in Table 5. The actual factor levels are shown in this table and the runs are in a random 
order. It can be seen that there is a centre value for every factor in this table and that 
ranges on Factors: B (Speed of H2O addition), C (Amount of H2O), G (Calcination Ramp 
Rate) and K (Mole % Al) were increased over what they were in the initial 16-run 
fractional factorial design. A second 17-run definitive screening design was run using the 
DCR (dry→calcine→rinse) path shown in the bottom branch of Figure 1. This design and 
the resulting data are shown in Table 6.  

 
Table 5 Definitive screening design for rinsing order DRC (randomised order) 

Run 

Factor 
B speed 

H2O 
addition 

Factor 
C 

amount 
of H2O 

Factor 
E 

drying 
time 

Factor 
F 

drying 
temp 

Factor 
G Calc 
ramp 
rate 

Factor 
H 

Calc 
temp 

Factor 
J Calc 
time 

Factor 
K Mol 
% Al 

Surface 
area 

(m2/g) 

Pore 
volume 
(cm3/g) 

Pore 
diameter 

(nm) 
1 2 20 13.5 62.5 12 550 11 0.15 245.86 0.31 5.35 
2 3 5 24 62.5 22 700 2 0.05 63.08 0.15 11.4 
3 2 35 3 25 22 400 2 0.05 219.41 0.23 4.35 
4 2 5 24 100 2 700 20 0.25 193.84 0.25 5.4 
5 3 20 24 25 2 400 2 0.25 362.5 0.282 3.79 
6 3 35 3 100 12 700 2 0.25 130.16 0.26 11.4 
7 1 35 24 25 22 700 11 0.25 127.95 0.25 9.54 
8 1 35 24 100 2 550 2 0.05 142.16 0.23 5.9 
9 3 35 24 100 22 400 20 0.15 333.97 0.39 3.919 
10 3 5 3 25 22 550 20 0.25 112.26 0.23 10.09 
11 1 5 24 25 12 400 20 0.05 240.29 0.22 3.56 

12 1 5 3 25 2 700 2 0.15 83.09 0.13 8.1 

13 1 35 3 62.5 2 400 20 0.25 394.18 0.37 4.29 
14 3 5 3 100 2 400 11 0.05 208.94 0.21 4.53 
15 3 35 13.5 25 2 700 20 0.05 58.44 0.16 14.05 
16 1 5 13.5 100 22 400 2 0.25 449.81 0.36 4.15 
17 1 20 3 100 22 700 20 0.05 59.99 0.16 12.91 
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Table 6 Definitive screening design for rinsing order DCR (randomised order) 

Run 

Factor 
B speed 

H2O 
addition 

Factor 
C 

amount 
of H2O 

Factor 
E 

drying 
time 

Factor 
F 

drying 
temp 

Factor 
G 

Calc 
ramp 
rate 

Factor 
H 

Calc 
temp 

Factor 
J Calc 
time 

Factor 
K Mol 
% Al 

Surface 
area 

(m2/g) 

Pore 
volume 
(cm3/g) 

Pore 
diameter 

(nm) 
1 3 5 3 100 2 400 11 0.05 126.6849 0.381962 10 
2 1 5 13.5 100 22 400 2 0.25 189.27 0.332965 6.62 
3 3 5 3 25 22 550 20 0.25 101.8725 0.339303 11.16 
4 1 20 3 100 22 700 20 0.05 82.1226 0.362516 14.64 
5 1 35 24 25 22 700 11 0.25 132.5421 0.344219 8.48 
6 1 35 24 100 2 550 2 0.05 137.2066 0.390948 9.33 
7 2 35 3 25 22 400 2 0.05 139.2732 0.410541 10.3 
8 3 35 24 100 22 400 20 0.15 137.5256 0.437526 18.61 
9 1 5 24 25 12 400 20 0.05 139.9975 0.446502 11.02 
10 3 5 24 62.5 22 700 2 0.05 80.574 0.338265 15.34 
11 1 5 3 25 2 700 2 0.15 126.3628 0.403241 11.75 
12 3 35 13.5 25 2 700 20 0.05 97.0894 0.407181 13.29 
13 2 5 24 100 2 700 20 0.25 147.9825 0.38116 8.97 
14 2 20 13.5 62.5 12 550 11 0.15 118.9704 0.337983 12.47 
15 1 35 3 62.5 2 400 20 0.25 192.152 0.437772 7.76 
16 3 20 24 25 2 400 2 0.25 182.199 0.557723 16.86 
17 3 35 3 100 12 700 2 0.25 136.8539 0.516929 14.01 

In definitive screening designs, linear main effects are not confounded with two-factor 
interactions or quadratic effects, and linear-by-linear two-factor interactions are only 
partially confounded with quadratic effects. Therefore, the confusion caused by the 
confounding of main effects and interactions in the initial 16-run 2III

10-6 fractional 
factorial design could be avoided with the definitive screening design. A full quadratic 
model cannot be fit to the data from a definitive screening design because there would be 
more terms in the model ( )( )8

28 linear  8 quadratic interactions+ +  than there are runs 

in the design (17). 
We used Jones and Nachtsheim (2011)’s modified forward stepwise regression 

(described in the introduction) to analyse the data in Tables 5 and 6. The combine option 
in the JMP forward stepwise regression procedure was used to do this. When combine 
option entered insignificant terms into the model, the backward elimination procedure 
was used to trim them from the model. This procedure was used to select models for 
predicting surface area, pore diameter and pore volume from the results of the two 
definitive screening designs. 
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6 Results of analysis of data from the definitive screening designs 

The coded and scaled factors used as candidate terms in the model for the stepwise 
regression were:  

2(speed of H O Addition-2)/1BX = , 

2(Amount H O - 20)/15CX = , 

(Drying Time -13.5)/10.5EX = , 

(Drying Temp. - 62.5)/37.5FX = , 

(Calc. Ramp  -12)/10GX = , 

(Calc. Temp. -550)/150HX = , 

(Calc. Time -11)/9JX = , 

(Mole % AL .15) / .10KX = − . 

We found the procedure for fitting the equations to be fairly straightforward and 
repeatable. Forward steps were completed until the terms entering the equation no longer 
appeared significant. Due to the combine option, this resulted in models that contained all 
main effects involved in interactions and quadratic terms in the model. Backward 
elimination steps were then completed to sequentially remove terms that had the largest 
P-value and were not significant at the 0.05 level. A non-significant main effect was not 
removed if there was a significant interaction or quadratic term in the model that involved 
this main effect. This preserved the effect heredity in all cases. This procedure only took 
between 2 and 5 steps of the forward regression followed by zero to two steps of 
backward elimination. The coefficients for the resulting models are shown in Table 7. By 
examination of the R2 values and diagnostics plots, it could be seen that these equations 
fit the data from the definitive screening designs much better than the linear models 
(Table 7) fit the data from the fractional design. 
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Table 7 Results from definitive screening design 
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Table 7 Results from definitive screening design (continued) 
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7 Comparison of models from 2k-p and definitive screening designs 

The two definitive screening designs required a total of 34 experiments (17+17), while 
the 10 62III

−  fractional factorial design took only 16 experiments. There were only four 
factors found to have significant effects on the three responses in the fractional factorial 
designs, and the fitted models were not accurate enough to accurately predict the input 
factor settings necessary to produce a wide enough range of pore volume needed for 
different applications. The remainder of this section discusses the additional factors and 
interactions found in the prediction models fit to the data from the definitive screening 
designs and how they improved the predictions. 

Table 8 indicates the terms in the models fit to both the fractional factorial design and 
the definitive screening designs. The left column shows the abbreviation for factors and 
interaction terms in the models. The columns indicate to which design and response the 
model was fit. For example, the FF column indicates the model fit to the original 
fractional factorial design, and the DSD (DRC) column indicates the model fit to the 
definitive screening design used on the DRC (dry→rinse→calcine) process, etc. The + or 
− signs in the body of the table indicate the signs of the coefficients in the models. Signs 
followed by a superscript NS were not significant at the 0.05 level but were retained in 
the model to preserve effect heredity. It can be seen that all the effects (and the direction 
of effects) found significant in the original fractional factorial design are again confirmed 
by being found significant in the definitive screening designs. In addition, many other 
effects were found to be significant in the definitive screening designs and increased the 
predictive value of the models. 

Table 8 Comparison of models 

Model term 

Surface area Pore volume Pore diameter 

FF 
DSD 

(DRC) 
DSD 

(DCR) FF 
DSD 

(DRC) 
DSD 

(DCR) FF 
DSD 

(DRC) 
DSD 

(DCR) 

Calc. temp (H) − − −  − −NS + + +NS 

Dry temp (F) + +   +     

Amt. H2O (C)    + + +    

Speed H2O add (B)  −NS −   +NS  +NS + 

Calc. ramp (G)   −   −  +NS  

Mole % Al (K)  + +  +     

Calc. time (J)   −   −NS    

Dry time (E)  +      − +NS 

(B2)        +  

(BC)      +    

(BJ)      −    

(GJ)   −   +    

(BE)  +       + 

(EH)         − 

(FK)  +        

s 83 30 11 .12 .0033 .0032 2.84 1.44 1.48 



   

 

   

   
 

   

   

 

   

   18 R. Olsen et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

It can be seen in the table that factor B (Speed of H2O addition) did not have a significant 
effect on any of the three responses in the models fit to the data from the fractional 
factorial design (even though it had the third largest effect on pore diameter). However, 
in the definitive screening designs, it did have significant effects. For the DRC 
(dry→rinse→calcine) process, it had a negative effect on the surface area and a positive 
and quadratic effect on pore diameter. For the DCR (dry→calcine→rinse) process, it had 
a somewhat negative effect on surface area that depended on the level of factor E (Drying 
time). It had a positive effect on pore volume that depended on the level of factor C 
(Amount of H2O), and it had a positive effect on pore diameter that depended on the level 
of factor E (Drying time). 

It can be seen that factor G (Calcination ramp rate) was not found to have any 
significant effects on any of the three responses in the fractional factorial design. 
However, it also had significant effects in the definitive screening designs. In the DCR 
(dry→calcine→rinse) process, it had a significant negative effect on both pore volume 
and pore diameter that depended on the level of factor J - Calcination time. 

Factor K (Mole % Al) did not have a significant effect on any response in the 
fractional factorial design, but it did have significant effects on surface area and pore 
volume in the definitive screening designs. In the DRC (dry→rinse→calcine) process, it 
had a positive effect on surface area that depended on the level of factor F (Drying 
Temp.), and it had a positive effect on pore volume. It also had a positive effect on 
surface area in the DCR (dry→calcine→rinse) process. 

In the definitive screening design conducted on the DCR (dry→calcine→rinse) 
process, factor J (Calcination time) had a negative effect on surface area that depended on 
the level of factor G (Calcination ramp rate), and it had a somewhat negative effect on 
pore volume that depended on the levels of both factors B (Speed of H2O addition) and 
G. Again, factor J did not have any significant effect on the responses in the fractional 
factorial design. 

Finally, although factor E (Drying time) had no significant effects on the responses in 
the fractional factorial design, it did in the definitive screening designs. For experiments 
conducted with the DRC (dry→rinse→calcine) process, it had a positive effect on surface 
area that depended on the level of factor B (Speed of H2O addition), and it had a negative 
effect on pore volume. For experiments conducted in the DCR (dry→calcine→rinse) 
process, it had a somewhat positive effect on pore diameter that depended on the level of 
both factors B and H (Calcination Temp.). 

Including these additional factors and interactions to the models fit to the definitive 
screening designs improved the accuracy of predicting pore volume by reducing the root 
mean square error (s) (shown at the bottom of Table 8) by more than 70%. Confirmation 
trials were shown in Olsen et al. (2014) to verify the accuracy of the prediction equations. 
A comparison of the 95% predicted intervals for pore volume on these trials between the 
equation fit to the fractional factorial design and the equations fit to the definitive 
screening designs are shown in Figure 6. In addition, the results of the confirmation trials 
are also shown in the figure. 
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Figure 6 Predicted pore volume from confirmation experiments 

 

The graph on the left side of the figure shows predictions intervals and the result of 
confirmation experiments for the DRC (dry→rinse→calcine) process. The grey lines 
show the prediction intervals obtained from the model fit to the fractional factorial 
design. These intervals were wide and the predicted values were constant because factor 
C was constant in these confirmation trials, and it was the only factor beside rinse order 
found to affect pore volume in the fractional factorial design. The black lines show the 
prediction intervals from the model fit to the definitive screening design. The predicted 
pore volumes from this model are lower for trials 3, 4 and 5 because the level of factor H 
(Calcination Temp) was increased and the level of factor F (Drying Temp.) was 
decreased during these trials. These two factors had significant effects on pore volume in 
the model for the DRC process. 

The graph on the right side of the figure shows prediction intervals and the result of 
confirmation experiments for the DCR (dry→calcine→rinse) process. The grey lines 
show the prediction intervals obtained from the model fit to the fractional factorial 
design. Again, these intervals were wide and the predicted values were constant because 
factor C was constant in these confirmation trials. The black lines show the prediction 
intervals from the model fit to the definitive screening design, and it can be seen that this 
model did a much better job of predicting the results of these confirmation trials. 

Although the results of the confirmation trial fall within nearly all the prediction 
intervals obtained from the models fit to the data from both the fractional factorial design 
and the definitive screening designs, the range of predicted pore volume (0.19–0.59) is 
much greater from the models fit to the definitive screening designs than the range of 
predicted values (0.40–0.65) from the model fit to fractional factorial design. Therefore, 
the models fit to the definitive screening designs are much more useful for identifying 
process conditions useful for catalyst applications requiring large or small pore volume. 
The width of the prediction intervals from the models fit to the definitive screening 
designs are also much narrower that those obtained from the model fit to the fractional 
factorial design. 
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8 Comparison of results from definitive screening designs to potential 
results from traditional follow-up experiments to the 2k-p design 

The two definitive screening designs required a total of 34 experiments, which was no 
more than would have been required using either of the two more traditional approaches 
for running follow-up experiments described in Section 4.  

From the models fit to the definitive screening designs, seven of the original 10 
factors were found to have significant effects on one or more of the three responses, and 
several interaction effects and one quadratic effect were found to be significant. If the 
assumption had been made that only factors C, D, F and H were important enough to vary 
in follow-up experiments to the original fractional factorial design, three important 
factors and all of the interactions and the quadratic term would have been missed. The 
ranges on factors B, C, G and K were increased in the definitive screening designs, and 
this could be another reason that factors B, G, K and interactions with these factors were 
found to be significant. Follow-up experiments using the mirror image design on all 
factors may not have detected these effects using the original range of factor levels.  

9 Discussion and insights 

Section 7 compared the equations and predictions made from the fractional factorial 
design to the equations and predictions made from the two definitive screening designs. 
With roughly twice the number of experiments required to investigate one less factor, and 
expanded ranges on four factors, it was clear that the equations fit to the results of the 
definitive screening designs were more useful for the intended application and were more 
accurate in predicting the results of the 10 confirmation experiments. With more data, the 
results from the definitive screening designs not only confirmed the major findings of the 
fractional factorial designs but identified additional important factors and allowed for 
more accurate prediction equations to be fit. Of course, the accuracy of the equations fit 
to the data from the fractional factorial designs could have been improved by conducting 
follow-up experiments. However, for the situation we studied, the number of required 
follow-up experiments could have been as many or more than those required by the 
definitive screening designs.  

When there are multiple responses and the set of factors that affect each of these 
responses is different, the job of determining how to augment a resolution III fractional 
factorial screening design becomes much more difficult. Most textbooks on experimental 
design only illustrate traditional approaches to augmenting a fractional factorial design 
when there is only one response of interest. We considered two possible approaches to 
augmenting the fractional factorial design, and the first approach (which would have 
required fewer follow-up experiments) would not have been effective. On the other hand, 
using the definitive screening design for follow-up experiments worked quite well. 
Therefore, in situations like this with multiple responses and different sets of factors 
found to affect each response in an initial screening experiment, we would recommend 
the use of a definitive screening experiment in place of traditional follow-up experiments 
to a resolution III design. 

In screening designs, it is important to vary the continuous factors over a wide range 
so that their effects can be identified above the level of the experimental error. However, 
if there are curvilinear relationships or diminishing returns as factor levels are increased, 
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a wider range of factor settings in a two-level design may actually decrease the power for 
detecting an effect. Therefore, in the case where curvilinear relationships are suspected 
from the outset, the definitive screening design may be a better choice than a resolution 
III two-level design for initial screening. 

We believe traditional resolution III two-level screening experiments and sequential 
follow-up experiments are still valuable, especially when used in early stages of 
investigations or where many of the factors are binary and can only be turned on or off. 
Resolution III designs are extremely efficient in terms of the number of runs required and 
will waste the fewest resources when experimenters are learning how to vary factor levels 
and measure appropriate responses. Additionally, if there is only one response (or a 
consistent set of important factors for all responses), there may only be a minimal number 
of follow-up experiments required to augment a resolution III design to allow fitting an 
adequate optimisation model. 

On the other hand, if the research is at a stage where a majority of factors can be 
varied over a continuous range or quadratic relationships are suspected, we would 
recommend using the definitive screening designs over the traditional resolution IV or V 
two-level screening designs. Resolution V designs require more runs than definitive 
screening designs and they are rarely needed because all two-factor interactions are 
usually not important. There is inherently more confounding among two-factor 
interactions in resolution IV designs, and unlike definitive screening designs, they are 
inadequate for estimating quadratic effects. 

The central composite or Box-Behnken designs traditionally used when collecting 
data to fit curvilinear models require many more runs than a definitive screening design. 
For example, a definitive screening design with nine factors requires only 19 
experiments, while a central composite or Box-Behnken design would require 130–156 
experiments. This is because these traditional response surface designs allow estimation 
of all coefficients in the general quadratic model, while in the definitive screening 
designs two-factor interactions and quadratic effects are partially confounded. If more 
than six factors are under study, the extra experiments needed for a traditional response 
surface design are rarely needed because all two-factor interactions and quadratic effects 
are usually not important. Therefore, with six or more factors, we would recommend 
starting with a definitive screening design rather than a traditional response surface 
design. If after analysis of the data from a definitive screening design, a simple and 
adequate model cannot be determined (as in the example presented in this paper), the 
design can be augmented to maximise the determinant of X′X as discussed in Section 4 of 
this paper, or better yet to maximise the I-optimality as described by Jones and Goos 
(2012). 

Definitive screening designs cannot be analysed in the same way as traditional 
fractional factorial designs by looking at a graphical display (i.e., normal plot or Lenth 
plot) of an independent set of orthogonal effect contrasts. This may make those used to 
the traditional designs uncomfortable. However, we found the identification of a useful 
model involving main effects, two-factor interactions, and quadratic terms to be fairly 
straightforward using Jones and Nachtsheim (2011)’s modified forward stepwise 
regression. 

Based on our experience, we cannot say that traditional resolution III fractional 
factorial screening experiments are now obsolete. Nor can we say that definitive 
screening designs should completely replace the traditional approach for finding a model 
good enough to identify optimum operating conditions or to make useful predictions. We 
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do find the definitive screening designs to be a welcome addition. We found that they 
were useful as follow-up experiments in a complicated situation with multiple responses. 
We also believe that they can provide an alternative one-step screening and optimisation 
opportunity in some situations.  
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