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Abstract: Even if the numerical simulation of the unsteady viscous Burgers’ 
equation is well documented in the literature, a detailed literature survey 
indicates that there is still gaps exists for comparative investigation regarding 
the effect of Hopf-Cole transformation on the efficiency and accuracy of 
schemes. In this paper, a comparative numerical investigation of Burgers’ 
equation is presented based on two different approaches. Hopf-Cole 
transformation is implemented on this equation and then solved by modified 
Keller box scheme. We sketch a new implicit scheme with second order 
accuracy in space and time, which is proposed to solve Burgers’ equation 
without using Hopf-Cole transformation. Numerical results of two test 
problems, which are calculated for various values of kinematic viscosity and 
time steps, are found to be matching with the exact solution. The new implicit 
box scheme is proved to be more accurate than the modified Keller box scheme 
with Hopf-Cole transformation based on L2 and L∞ errors. 
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1 Introduction 

It is necessary to have deep understanding about the mechanism of fluid flow through a 
pipe, as it is extensively used in advanced engineering systems, industry and our  
day-to-day life. In human body the blood is flowing continuously through the arteries and 
veins. All the modern biomedical instruments like artificial hearts and dialysis systems 
work on the basis of fluid flow through pipes. In refrigeration and air conditioning 
application, refrigerants are flowing through pipes. On a broader scale, flow through 
pipes play an important role in the design and analysis of engineering systems. Burgers’ 
equation which can be used to study the flow through pipes is an important model. The 
Navier-Stokes equation is considered to be a cornerstone in fluid mechanics which, when 
expressed in its originality is a set of unsteady, nonlinear, second-order partial differential 
equations. Burgers’ equation whose exact solution is well-known, can be considered as a 
simplified form of the one-dimensional Navier-Stokes equation. Burgers’ model is 
suitable for the analysis in gas dynamics, shock wave theory, cosmology and traffic flow 
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(Collier et al., 2013; Dhawan et al., 2012; Kardar et al., 1986; Molchanov et al., 1997; 
Molchanov et al., 1995; Shandarin and Zeldovich, 1989; Vergassola et al., 1994). The 
application of this model in various similar important fields, always require the solution 
of basic Burgers’ equation. 

In 1915, Harry Bateman (1882–1946), an English mathematician, introduced the 
following equation in his paper along with its corresponding initial and boundary 
conditions given by equations (1) to (3). 

2

2
, 0 , 0u u uu x L t τ

t x x
∂ ∂ ∂+ = < < < <
∂ ∂ ∂

ν  (1) 

( , 0) ( ), 0u x ψ x x L= < <  (2) 

1 2(0, ) ( ), ( , ) ( ), 0u t ζ t u L t ζ t t τ= = < <  (3) 

where u, x, t and ν are the velocity, spatial coordinate, time and kinematic viscosity, 
respectively. The ψ, ζ1 and ζ2 are prescribed functions of variables depending upon the 
specific conditions for the problem to be solved. Later in 1948, Johannes Martinus 
Burgers (1895–1981) (Burgers, 1939, 1948; Nieuwstadt and Steketee, 1995), a Dutch 
physicist, explained the mathematical modelling of turbulence with the help of  
equation (1). In order to honour the contributions of Burgers, this equation is well-known 
as the ‘Burgers’ equation’. The simultaneous presence of nonlinear convective term 

( )uu
x

∂
∂

 and diffusive term 
2

2
( )u

x
∂
∂

ν  add an additional feature to the Burgers’ equation. 

When ν approaches zero, equation (1) become inviscid Burgers’ equation which is a 
model for nonlinear wave propagation. When u approach zero, equation (1) become the 
heat equation. 

Julian David Cole (1925–1999) (Cole, 1951) and E. Hopf (1902–1983) (Hopf, 1950) 
independently introduced a transformation to convert Burgers’ equation into a linear heat 
equation and solved exactly for an arbitrary initial condition. Hence, the transformation is 
famously known as Hopf-Cole transformation given by equation (4). 

( , ) 2 ,θxu x t
θ

= − ν  (4) 

where, θ satisfy the heat equation 
2

2
θ θ
t x

∂ ∂=
∂ ∂

ν  (5) 

Benton and Platman (1972) have been given 35 distinct analytical solutions of Burgers’ 
equation with different initial conditions. Rodin (1970) studied some approximate and 
exact solution of boundary value problem for Burgers’ equation with the help of  
Hopf-Cole transformation. Kutluay et al. (1999) used Hopf-Cole transformation to 
convert Burgers’ equation to a heat equation. The transformed heat equation with the 
insulated boundary conditions was solved by explicit and exact-explicit finite difference 
method. Bakodah (2011) used MOL semi-discretisation approach to transform partial 
differential equations into a system of first order linear ordinary differential equations. 
The main contribution by Bakodah was the use of 7-point formula in MOL for solving 
Burgers’ equation with arbitrary initial conditions. MOL is used by various authors to 
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solve the system of ODE and PDE (Kurtz et al., 1977; Oymak and Selcuk, 1996; Rothe, 
1930; Shampine, 1994; Shu, 1988; Spiteri and Ruuth, 2002). Burns et al. (1998) have 
been considered Burgers’ equation with zero-Neumann boundary conditions to show that, 
for moderate values of the viscosity, numerical solution approach non-constant shock 
type stationary solution. Based on Hopf-Cole linearisation, Brander and Hedenfalk 
(1998) solved Burgers’ equation in one space dimension for an arbitrary incident pulse of 
finite length. Restrictive Pade approximation classical implicit finite difference method 
was implemented by Gulsu (2006) whose accuracy was demonstrated by the two test 
problem. 

The structure of this paper includes Section 2 which gives details of proposed 
difference scheme for Burgers’ equation. This section is split into two parts; an implicit 
box scheme with Hopf-Cole transformation and the proposed implicit scheme without 
Hopf-Cole transformation. To obtain the finite difference solution of Burgers’ equation, 
the differential equation at each node is replaced by a difference equation. After 
considering boundary conditions in the difference equations, the resulting algebraic 
system of equations is solved. In Section 3, the accuracy of the proposed scheme is 
verified by performing several numerical experiments and calculating L2 and L∞ errors. 
Section 4 contains results and discussion of numerical experiments performed with test 
examples. Conclusions arrived based on the presented work are elaborated in Section 5. 

2 Difference scheme 

The solution domain is discretised with uniform meshes. The space interval [0, 1] is 
divided into N equal subintervals. The time interval [0, τ] is divided into M equal 
sub-intervals. Assuming Δx = 1/N as the mesh width in space and xi is set as xi = iΔx for  
i = 0, 1, …, N. Assuming Δt = τ/M as the mesh width in time and tn is set as tn = nΔt for  
n = 0, 1, …, M. 

2.1 Implicit box scheme with Hopf-Cole transformation 

By using Hop-Cole transformation Burgers’ equation is converted to heat equation 
(Kadalbajoo and Awasthi, 2006) which is then solved with the help of modified Keller 
box method (Bonkile et al., 2015). In Keller box scheme (Keller, 1970), second and 
higher derivatives of parabolic partial differential equation are replaced by first 
derivatives through the introduction of additional variables which result in a system of 
first-order equations. Equation (5) is written as a system of two first-order equations: 

θ T
t x

∂ ∂=
∂ ∂

ν  (6) 

θ T
x

∂ =
∂

 (7) 

We use central differences about 1 1( , ),
2 2

i n− +  making use of four points at the corners 

of a ‘box’ [Figure 1(a)]. The resulting difference equations for equations (6) and (7) are 
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1
2

1 1
1 1

Δ

n n
i i n

i
θ θ

T
x

+ +
− +

−

−
=  (8) 

1 1
2 21 1

2 2

1
1

Δ Δ

n n n n
i i i i
θ θ T T

t x

+ + +
− − −

− ⎛ ⎞−⎜ ⎟=
⎝ ⎠

ν  (9) 

The discretised terms containing subscript or superscript 1
2

 in equations (8) and (9) are 

defined as averages, for example, 

1
2

1 1
11

2

n n
i in

i
θ θθ

+ +
−+

−

+
=  (10) 

1
2

1

2

n nn i i
i

T TT
++ +=  (11) 

Figure 1 (a) Grid for box scheme (b) Difference molecule for evaluation of 1
2

1n
iT +
−  (c) Difference 

molecule for equation (9) (see online version for colours) 

 
(a) 

    
(b)     (c) 

Averaged expressions (10) and (11) are substituted into equations (8) and (9). The 
resulting difference equations become 

1 1 1 1
1 1

Δ 2

n n n n
i ii iθ θ T T

x

+ + + +
− −− +

=  (12) 
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1 1 1 1
1 1 1 1

Δ Δ Δ Δ

n n n n n n n n
i i i ii i i iθ θ T T θ θ T T

t x t x

+ + + +
− − − −+ − + −⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
ν ν  (13) 

In equations (12) and (13) T’s can be express in terms of θ’s. Substituting equation (12) 
into equation (13), 1

1
n

iT +
−  is eliminated. Equation (12) is evaluated at time level n to 

eliminate 1.n
iT −  Accordingly 

( )

1 1 1
1 1

1 1 1
1 1

22

Δ Δ Δ

2
(Δ ) Δ ΔΔ

n n n nn n
i ii ii i

n n n nn n
i ii ii i

θ θ θ θT T
t x t

θ θ θ θT T
x x xx

+ + +
− −

+ + +
− −

+ ++⎛ ⎞= +⎜ ⎟
⎝ ⎠

− −⎛ ⎞
− − + −⎜ ⎟

⎝ ⎠

ν

ν
 (14) 

Equations (12) and (13) are rewritten with the i index advanced by 1. 
1 1 1 1

1 1

Δ 2

n n n n
i ii iθ θ T T

x

+ + + +
+ +− +

=  (15) 

1 1 1 1
1 1 1 1

Δ Δ Δ Δ

n n n n n n n n
i i i ii i i iθ θ T T θ θ T T

t x t x

+ + + +
+ + + ++ − + −⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
ν ν  (16) 

To eliminate 1
1

n
iT +
+  and 1,n

iT +  equation (15) is simply substituted into equation (16). The 
result is 

( ) ( )1 11 1 1
1 11 1

2 2
2 2

Δ (Δ ) Δ Δ (Δ ) Δ

n n n nn n n nn n
i ii ii ii ii iθ θ θ θθ θ θ θT T

t x x t x x

+ ++ + +
+ ++ +⎛ ⎞ ⎛ ⎞− −+ +

= − + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ν ν  (17) 

Adding equations (14) and (17), we have 

1 1 1
1 12 2 2

1 12 2 2

2 Δ 4 Δ 2 Δ1 2 1
(Δ ) (Δ ) (Δ )

2 Δ 4 Δ 2 Δ1 2 1
(Δ ) (Δ ) (Δ )

n n n
ii i

n n n
ii i

t t tθ θ θ
x x x

t t tθ θ θ
x x x

+ + +
− +

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

ν ν ν

ν ν ν
 (18) 

Equation (18) can be written in tridiagonal form as 
1 1 1

1 1
n n n

i i i iii ia θ b θ c θ d+ + +
− ++ + =  (19) 

where, 

( )02
Δ1 2 1 2

(Δ )i
ta F

x
= − = −ν  (20) 

( )02
Δ2 4 2 1 2

(Δ )i
tb F

x
= + = +ν  (21) 

( )02
Δ1 2 1 2

(Δ )i
tc F

x
= − = −ν  (22) 



   

 

   

   
 

   

   

 

   

   60 M.P. Bonkile et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

( )( ) ( )

1 12 2 2

0 01 1

Δ Δ Δ1 2 2 4 1 2
(Δ ) (Δ ) (Δ )

1 2 2 1 2

n n n
i ii i

n n n
ii i

t t td θ θ θ
x x x

F θ θ F θ

− +

− +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + + + −

ν ν ν
 (23) 

Here 0 2
Δ

(Δ )
tF

x
= ν  is the Fourier number which is otherwise known as the dimensionless 

time. After assembling the entire system of equations and applying boundary conditions, 
the matrix form of the equation is Fθ = d. Where F is a tridiagonal matrix of order  
(N × N) and d and θ are column vectors. 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

0 0

0 0 0

0 0 0

0 0

2 1 2 2 1 2
1 2 2 1 2 1 2

. . .
;. . .

. . .
1 2 2 1 2 1 2

2 1 2 2 1 2

F F
F F F

F

F F F
F F

⎛ ⎞+ −
⎜ ⎟− + −⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟

− + −⎜ ⎟
⎜ ⎟− +⎝ ⎠

 

( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )

1
0 02 11

1
0 01 3 22

1
0 02 11

1
0 01

1 2 (0, ) 2 1 2
1 2 2 1 2

..
; ..

..
1 2 2 1 2
1 2 (1, ) 2 1 2

n nn

n n nn

n n nn
NN NN

n nn
NN N

F θ t θ F θθ
F θ θ F θθ

θ d

F θ θ F θθ
F θ θ t F θθ

+

+

+
− −−

+
−

⎛ ⎞+ + + −⎛ ⎞
⎜ ⎟⎜ ⎟ + + + −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

= = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟+ + + −⎜ ⎟
⎜ ⎟⎜ ⎟ + + + −⎝ ⎠ ⎝ ⎠

 

The approximate solution of Burgers’ equation (1) in terms of the approximate solution 
of heat equation by using the Hopf-Cole transformation (4) is given by 

1 1

Δ

n n
i in

i n
i

θ θu
xθ

+ −−⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
ν  (24) 

2.2 Implicit scheme without Hopf-Cole transformation 

In this approach, an implicit scheme similar to box method is directly implemented to 
nonlinear Burgers’ equation. In equation (1), let us substitute 

Φu
x

∂ =
∂

 (25) 

Equation (1) become 

ΦΦu u
t x

∂ ∂+ =
∂ ∂

ν  (26) 



   

 

   

   
 

   

   

 

   

    Comparative numerical investigation of Burgers’ equation 61    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

We use central differences about 1 1( , ).
2 2

i n− +  The resulting difference equations for 

equations (25) and (26) are 

1
2

1 1
1 1Φ

Δ

n n
i i n

i
u u

x

+ +
− +

−

−
=  (27) 

1 1
2 21 1

2 2
1 1
2 2

1
11 Φ ΦΦ

Δ Δ

n n n n
i i i in n

i i

u u
u

t x

+ + +
− − −+

− −

− ⎛ ⎞−⎜ ⎟+ =
⎝ ⎠

ν  (28) 

The discretised terms containing subscript or superscript 1
2

 in equations (27) and (28) are 

defined as averages, for example, 

1
2

1 1
11 Φ ΦΦ

2

n n
i in

i

+ +
−+

−

+
=  (29) 

1
2

1

2

n n
i in

i
u uu −

−

+
=  (30) 

After substituting average equations (29) and (30) into equations (25) and (26), the 
resulting difference equations are 

1 1 1 1
1 1Φ Φ

Δ 2

n n n n
i ii iu u

x

+ + + +
− −− +

=  (31) 

( )

1 1 1 1
1 1 1 1

1 1
1

1

Φ Φ Φ Φ
Δ Δ Δ

Φ Φ
2

n n n n n n n n
i i i ii i i i

n n
i in n

i i

u u u u
t x t

u u

+ + + +
− − − −

+ +
−

−

+ + − − +⎛ ⎞
= +⎜ ⎟

⎝ ⎠
+⎛ ⎞

− + ⎜ ⎟
⎝ ⎠

ν
 (32) 

1
1Φn

i
+
−  is eliminated from equation (32) by simply substituting equation (31). Similarly 

1Φn
i−  is eliminated by evaluating equation (31) at time level n. Accordingly 

( ) ( )

( )( )

1 11 1 1
1 11

2 2

1 1
1 11

2 22Φ 2Φ
Δ Δ Δ Δ Δ

Δ Δ

n n n nn n n n
i ii ii i ii

n n n nn n
i ii ii i

u u u uu u
t x x x x

u u u uu u
t x

+ ++ + +
− −−

+ +
− −−

⎛ ⎞− −+
= + − −⎜ ⎟

⎝ ⎠
⎛ ⎞+ −+

+ − ⎜ ⎟
⎝ ⎠

ν
 (33) 

To eliminate 1
1Φn

i
+
+  and 1Φ ,n

i+  equations (31) and (32) are first rewritten with i index 
advanced by 1. 

1 1 1 1
1 1Φ Φ
Δ 2

n n n n
i ii iu u

x

+ + + +
+ +− +

=  (34) 
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( )( )

1 1 1 1
1 1 1 1

1 1
1 1

Φ Φ Φ Φ
Δ Δ Δ

Φ Φ
2

n n n n n n n n
i i i ii i i i

n n n n
i ii i

u u u u
t x t

u u

+ + + +
+ + + +

+ +
+ +

+ − + − +⎛ ⎞
= +⎜ ⎟

⎝ ⎠
+ +

−

ν
 (35) 

Equation (34) is substituted in equation (35), to eliminated 1
1Φn

i
+
+  and 1Φn

i+  

( ) ( )

( )( )

1 1 1
1 11 1

1 2 2

1 1
1 11

2 22Φ 2Φ
Δ Δ Δ Δ

Δ Δ

n n n nn n
i ii ii in n

ii

n n n nn n
i ii iii

u u u u
u u

x x x x
u u u uu u

t x

+ + +
+ ++ +

+

+ +
+ ++

⎛ ⎞− −
+ = − + −⎜ ⎟

⎝ ⎠
+ −+

+ −

ν
 (36) 

Adding equations (33) and (36), the rearranged final expression is 

( )
( ) ( )

( )

1 1
1 1 1 12 2

1
1 1 12 2 2

12

2 Δ Δ 2 Δ Δ1 2 2
Δ (Δ ) ΔΔ

2 Δ Δ 2 Δ 2 Δ1 1 2 2
(Δ ) Δ (Δ ) (Δ )

2 Δ1
(Δ )

n n n n n n
i ii i i i

n n n n n
i ii i i

n
i

t t t tu u u u u u
x x xx

t t t tu u u u u
x x x x

t u
x

+ +
− − − −

+
+ + −

+

⎡ ⎤ ⎡ ⎤− − + + + + +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − + + = + + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤+ +⎢ ⎥⎣ ⎦

ν ν

ν ν ν

ν

 (37) 

Equation (37) can be written in tridiagonal form as 
1 1 1

1 1
n n n

i i i iii iA u B u C u D+ + +
− ++ + =  (38) 

where, 

( )

( )

12

0 1

Δ Δ1 2
(Δ ) Δ

Δ1 2
Δ

n n
i i i

n n
i i

t tA u u
x x

tF u u
x

−

−

= − − +

= − − +

ν

 (39) 

( )

( )

1 12

0 1 1

Δ Δ2 4
(Δ ) Δ

Δ2 4
Δ

n n
i i i

n n
i i

t tB u u
x x

tF u u
x

− −

− −

= + + +

= + + +

ν

 (40) 

( )

( )

12

0 1

Δ Δ1 2
(Δ ) Δ

Δ1 2
Δ

n n
i ii

n n
ii

t tC u u
x x

tF u u
x

+

+

= − + +

= − + +

ν

 (41) 

( ) ( ) ( )

1 12 2 2

0 0 01 1

Δ Δ Δ1 2 2 4 1 2
(Δ ) (Δ ) (Δ )

1 2 2 4 1 2

n n n
i ii i

n n n
ii i

t tD u u u
x x x

F u F u F u

− +

− +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + − + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= + + − + +

ν τ ν ν
 (42) 
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Figure 2 Flow chart for the algorithm with Hopf-Cole transformation (see online version  
for colours) 
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Figure 3 Flow chart for the new implicit scheme (see online version for colours) 
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After assembling the entire system of equations and applying boundary conditions, the 
general matrix form is Fu = D. Where F is a tridiagonal matrix of order (N – 2) × (N – 2), 
D and u are the vectors. 

1
2 2 2

1
3 3 3 3

1
2 2 2 2

1
1 1 1

. . . .
; ;. . . .

. . . .

n

n

n
N N N N

n
N N N

B C u
A B C u

F u

A B C u
A B u

+

+

+
− − − −

+
− − −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

= = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

0 0 01 2 3

0 0 02 3 4

0 0 03 2 1

0 0 02 1

1 2 2 4 1 2
1 2 2 4 1 2

.

.

.
1 2 2 4 1 2
1 2 2 4 1 2

n n n

n n n

n n n
N N N

n n n
NN N

F u F u F u
F u F u F u

D

F u F u F u
F u F u F u

− − −

− −

⎛ ⎞+ + − + +
⎜ ⎟+ + − + +⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟

+ + − + +⎜ ⎟
⎜ ⎟+ + − + +⎝ ⎠

 

3 Numerical experiments 

After presenting the proposed scheme, here the simulation study of two test examples is 
undertaken to validate the theoretical results obtained by the new scheme without  
Hopf-Cole transformation. Due to its transient nature, Burgers’ equation is difficult for 
carrying out the analyses. The boundary conditions have sufficient smoothness for 
maintaining the order of accuracy of the proposed scheme. Matlab software is used to 
programme and generate the numerical solutions of the boundary value problems. A 
small time increment (Δt = 0.00001, 0.0001, 0.01) is chosen to insure high accuracy. 
Also, L2 and L∞ errors are evaluated to measure the accuracy and the efficiency of the 
proposed method. L2 and L∞ errors are defined as 

[ ]
1
2

2
2

1
1

, max
N

exact exact
i i i i

i N
i

L u u L u u+ +
∞

≤ ≤
=

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟
⎝ ⎠
∑  (43) 

where iu+  represent the numerical solution at node i. 

Example 1: Burgers’ equation (1) with initial condition and homogeneous boundary 
conditions 

( , 0) sin( ), 0 1,u x πx x= < <  

(0, ) (1, ) 0, 0u t u t t τ= = ≤ ≤  
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By using Hopf-Cole transformation (4), equation (1) is transformed to the linear heat 
equation (5) with initial condition (44) and boundary conditions (45) 

1( , 0) exp [1 cos( )] , 0 1
2

θ x πx x
π

⎛ ⎞= − − < <⎜ ⎟
⎝ ⎠ν

 (44) 

(0, ) (1, ) 0, 0 .x xθ t θ t t τ= = ≤ ≤  (45) 

Example 2: Burgers’ equation (1) with the following initial condition and boundary 
conditions 

( , 0) 4 (1 ), 0 1,u x x x x= − < <  

(0, ) 0 (1, ), 0 .u t u t t τ= = ≤ ≤  

By using Hopf-Cole transformation (4), equation (1) is transformed to linear heat 
equation (5) with initial condition and boundary conditions 

3
21 4( , 0) exp 2 , 0 1

2 3
xθ x x x

⎛ ⎞⎡ ⎤= − − < <⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠ν
 (46) 

(0, ) (1, ) 0, 0 .x xθ t θ t t τ= = ≤ ≤  (47) 

Exact solution was elaborated by Kadalbajoo and Awasthi (2006) for both Examples 1 
and 2. 

4 Results and discussion 

Burgers’ equation being a nonlinear PDE represents various physical problems arising in 
engineering which are inherently difficult to solve. This section contains results and 
discussion of numerical experiments performed on test examples. L2 and L∞ error are 
calculated at N = 10, 20, 40, 80 for both the schemes. Tables 1 to 4 display comparison of 
L2 and L∞ error calculated for scheme with and without Hopf-Cole transformation 
considering test example 1. For various values of ν and Δt, comparison of L2 and L∞ error 
calculated for scheme with and without Hopf-Cole transformation considering test 
example 2 is shown in Tables 5 to 8. Four different values of kinematic viscosity  
(ν = 0.005, 0.01, 0.1, 1) is considered in increasing order. In most of the cases it is 
observed that, L2 and L∞ error of numerical solution obtained without Hopf-Cole 
transformation is less. L∞ error is significantly reduced for the proposed scheme without 
Hopf-Cole transformation. It is observed that, the proposed implicit scheme without 
Hopf-Cole transformation performs well as compared to modified box scheme coupled 
with Hopf-Cole transformation. In Figure 4 and 5, graphs are plotted for error vs. N. Blue 
and green lines represent L2 error without and with Hopf-Cole transformation 
respectively. Whereas red and yellow lines represent L∞ error without and with  
Hopf-Cole transformation respectively. It is clear from these graphs that, at N = 40 both 
L2 and L∞ error decrease suddenly. It is found that the computed results show better 
agreement with the exact solution as the mesh size is refined. 
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Table 1 Comparison of the L2 and L∞ error of ex. 1 for ν = 0.005, τ = 7 and Δt = 0.01 

 N = 10  N = 20 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 0.03013 6.30065 × 10−4  0.00599 1.86747 × 10−4 
L∞ 0.24240 0.00540  0.11420 0.00341 
 N = 40  N = 80 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 3.23644 × 10−4 3.46470 × 10−5  6.32711 × 10−5 1.31974 × 10−5 
L∞ 0.00532 7.04929 × 10−4  0.00142 2.73112 × 10−4 

Table 2 Comparison of the L2 and L∞ error of ex. 1 for ν = 0.01, τ = 5 and Δt = 0.01 

 N = 10  N = 20 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 0.04832 8.20495 × 10−4  8.88056 × 10−4 1.56212 × 10−4 
L∞ 0.47831 0.00744  0.01004 0.00236 
 N = 40  N = 80 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 1.70411 × 10−4 3.81897 × 10−5  4.53729 × 10−5 2.42870 × 10−5 
L∞ 0.00264 5.12893 × 10−4  9.35877 × 10−4 4.34366 × 10−4 

Table 3 Comparison of the L2 and L∞ error of ex. 1 for ν = 0.1, τ = 1 and Δt = 0.0001 

 N = 10  N = 20 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 0.00223 0.00135  3.91918 × 10−4 2.38391 × 10−4 
L∞ 0.01000 0.00874  0.00250 0.00218 
 N = 40  N = 80 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 6.65393 × 10−5 4.04704 × 10−5  9.84522 × 10−6 6.01207 × 10−6 
L∞ 6.04666 × 10−4 5.36008 × 10−4  1.29917 × 10−4 1.16958 × 10−4 

Table 4 Comparison of the L2 and L∞ error of ex. 1 for ν = 1, τ = 0.1 and Δt = 0.0001 

 N = 10  N = 20 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 0.00261 0.00128  4.21894 ×10−4 1.82668 ×10−4 
L∞ 0.01170 0.00580  0.00266 0.00117 
 N = 40  N = 80 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 4.40145 ×10−5 3.69330 ×10−6  1.39859 ×10−5 2.13554 ×10−5 
L∞ 3.94900 ×10−4 4.10527 ×10−5  1.78162 ×10−4 2.70405 ×10−4 
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Table 5 Comparison of the L2 and L∞ error of ex. 2 for ν = 0.005, τ = 7 and Δt = 0.01 

 N = 10  N = 20 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 0.02516 6.26644 × 10−4  0.01636 1.90023 × 10−4 
L∞ 0.16941 0.00534  0.28872 0.00351 
 N = 40  N = 80 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 3.43914 × 10−4 3.46009 × 10−5  6.50026 × 10−5 1.27168 × 10−5 
L∞ 0.00658 7.33178 × 10−4  0.00148 2.65749 × 10−4 

Table 6 Comparison of the L2 and L∞ error of ex. 2 for ν = 0.01, τ = 5 and Δt =0.01 

 N = 10  N = 20 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 0.07687 8.40126 × 10−4  9.54599 × 10−4 1.58959 × 10−4 
L∞ 0.76142 0.00774  0.01337 0.00247 
 N = 40  N = 80 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 1.76817 × 10−4 3.67044 × 10−5  4.67206 × 10−5 2.32107 × 10−5 
L∞ 0.00283 4.91576 × 10−4  9.66020 × 10−4 4.18431 × 10−4 

Table 7 Comparison of the L2 and L∞ error of ex. 2 for ν = 0.1, τ = 1 and Δt = 0.0001 

 N = 10  N = 20 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 0.00228 0.00140  4.00813 × 10−4 2.47679 × 10−4 
L∞ 0.01034 0.00910  0.00256 0.00227 
 N = 40  N = 80 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 6.80527 × 10−5 4.20617 × 10−5  1.00726 × 10−5 6.26291 × 10−6 
L∞ 6.20440 × 10−4 5.59172 × 10−4  1.33655 × 10−4 1.22276 × 10−4 

Table 8 Comparison of the L2 and L∞ error of ex. 2 for ν = 1, τ = 0.1 and Δt = 0.0001 

 N = 10  N = 20 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 0.00269 0.00132  4.35078 × 10−4 1.88513 × 10−4 
L∞ 0.01206 0.00600  0.00275 0.00121 
 N = 40  N = 80 
 With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
L2 4.52541 × 10−5 3.74359 × 10−6  1.45550 × 10−5 2.21445 × 10−5 
L∞ 4.05840 × 10−4 4.15969 × 10−5  1.85578 × 10−4 2.80406 × 10−4 
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Figure 4 L2 and L∞ error of ex. 1 at (a) τ = 0.1 for ν = 1 and Δt = 0.0001 (b) τ = 5 for ν = 0.01 and 
Δt = 0.01 (c) τ = 7 for ν = 0.005 and Δt = 0.01 (d) τ = 1 for ν = 0.1 and  
Δt = 0.0001 (see online version for colours) 

 

(a) 

 

(b) 
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Figure 4 L2 and L∞ error of ex. 1 at (a) τ = 0.1 for ν = 1 and Δt = 0.0001 (b) τ = 5 for ν = 0.01 and 
Δt = 0.01 (c) τ = 7 for ν = 0.005 and Δt = 0.01 (d) τ = 1 for ν = 0.1 and  
Δt = 0.0001 (continued) (see online version for colours) 

 
(d) 

Figure 5 L2 and L∞ error of ex. 2 at (a) τ = 1 for ν = 0.1 and Δt = 0.0001 (b) τ =0.1 for ν = 1 and 
Δt = 0.0001 (c) τ = 5 for ν = 0.01 and Δt = 0.01 (d) τ = 7 for ν = 0.005 and Δt = 0.01 
(see online version for colours) 

 
(a) 

 
(b) 
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Figure 5 L2 and L∞ error of ex. 2 at (a) τ = 1 for ν = 0.1 and Δt = 0.0001 (b) τ =0.1 for ν = 1 and 
Δt = 0.0001 (c) τ = 5 for ν = 0.01 and Δt = 0.01 (d) τ = 7 for ν = 0.005 and Δt = 0.01 
(continued) (see online version for colours) 

 
(c) 

 
(d) 

Table 9 Comparison of the numerical solution with the exact solution at different space points 
of ex. 1 at τ = 0.1 for ν = 1 and Δt = 0.0001 

x 
N = 40  N = 80 Exact 

solution With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
0.1 0.10940 0.10955  0.10958 0.10961 0.10953 
0.2 0.20954 0.20981  0.20988 0.20994 0.20979 
0.3 0.29156 0.29191  0.29202 0.29211 0.29189 
0.4 0.34754 0.34793  0.34808 0.34817 0.34792 
0.5 0.37118 0.37156  0.37175 0.37184 0.37157 
0.6 0.35868 0.35901  0.35922 0.35930 0.35904 
0.7 0.30960 0.30986  0.31006 0.31012 0.30990 
0.8 0.22760 0.22777  0.22793 0.22798 0.22781 
0.9 0.12057 0.12066  0.12075 0.12077 0.12068 
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Table 10 Comparison of the numerical solution with the exact solution at different space points 
of ex. 1 at τ = 0.01 for ν = 10 and Δt = 0.00001 

x 
N = 40  N = 80 Exact 

solution With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
0.1 0.11449 0.11461  0.11466 0.11469 0.11461 
0.2 0.21793 0.21816  0.21826 0.21832 0.21816 
0.3 0.30029 0.30061  0.30075 0.30083 0.30061 
0.4 0.35352 0.35388  0.35406 0.35415 0.35389 
0.5 0.37230 0.37268  0.37287 0.37296 0.37269 
0.6 0.35464 0.35500  0.35518 0.35527 0.35501 
0.7 0.30210 0.30241  0.30257 0.30264 0.30242 
0.8 0.21974 0.21996  0.22008 0.22013 0.21997 
0.9 0.11561 0.11572  0.11578 0.11581 0.11573 

Table 11 Comparison of the numerical solution with the exact solution at different space points 
of ex. 2 at τ = 0.1 for ν = 1 and Δt = 0.0001 

x 
N = 40  N = 80 Exact 

solution With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
0.1 0.11275 0.11290  0.11293 0.11297 0.11289 
0.2 0.21600 0.21627  0.21634 0.21641 0.21625 
0.3 0.30062 0.30098  0.30109 0.30118 0.30097 
0.4 0.35846 0.35887  0.35902 0.35912 0.35886 
0.5 0.38301 0.38341  0.38360 0.38370 0.38342 
0.6 0.37028 0.37063  0.37084 0.37092 0.37066 
0.7 0.31975 0.32002  0.32022 0.32029 0.32007 
0.8 0.23514 0.23533  0.23549 0.23554 0.23537 
0.9 0.12460 0.12469  0.12478 0.12480 0.12472 

Table 12 Comparison of the numerical solution with the exact solution at different space points 
of ex. 2 at τ = 0.01 for ν = 10 and Δt = 0.00001 

x 
N = 40  N = 80 Exact 

solution With Hopf-Cole Without Hopf-Cole  With Hopf-Cole Without Hopf-Cole 
0.1 0.11814 0.11827  0.11833 0.11836 0.11827 
0.2 0.22489 0.22513  0.22524 0.22530 0.22513 
0.3 0.30989 0.31021  0.31037 0.31045 0.31022 
0.4 0.36483 0.36521  0.36539 0.36548 0.36521 
0.5 0.38422 0.38462  0.38481 0.38491 0.38463 
0.6 0.36602 0.36639  0.36658 0.36667 0.36640 
0.7 0.31181 0.31213  0.31229 0.31237 0.31214 
0.8 0.22681 0.22704  0.22716 0.22722 0.22705 
0.9 0.11933 0.11945  0.11951 0.11954 0.11946 
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Figure 6 Numerical solution profiles of ex. 1 with Hopf-Cole transformation at Δx = 0.025 for 
(a) ν = 0.01, Δt = 0.001 (b) ν = 0.005, Δt = 0.1 (see online version for colours) 

 
(a) 

 
(b) 

Figure 7 Numerical solution profiles of ex. 1 without Hopf-Cole transformation at Δx = 0.025 for 
(a) ν = 0.01, Δt = 0.001 (b) ν = 0.005, Δt = 0.1 (see online version for colours) 

 
(a) 
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Figure 7 Numerical solution profiles of ex. 1 without Hopf-Cole transformation at Δx = 0.025 for 
(a) ν = 0.01, Δt = 0.001 (b) ν = 0.005, Δt = 0.1 (continued) (see online version  
for colours) 

 
(b) 

Figure 8 Numerical solution profiles of ex. 2 with Hopf-Cole transformation at Δx = 0.025 for 
(a) ν = 1, Δt = 0.0001 (b) ν = 0.1, Δt = 0.001 (see online version for colours) 

 
(a) 

 
(b) 
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Figure 9 Numerical solution profiles of ex. 2 without Hopf-Cole transformation at Δx = 0.025 for 
(a) ν = 1, Δt = 0.0001 (b) ν = 0.1, Δt = 0.001 (see online version for colours) 

 
(a) 

 
(b) 

Computed results for both the schemes are illustrated in Tables 9 and 10 for test  
example 1. In Table 9, numerical solution computed with and without Hopf-Cole 
transformation is compared with the exact solution for ν = 1 and Δt = 0.0001 at different 
space points. Table 10 includes comparison of numerical solution with the exact solution 
for ν = 10 and Δt = 0.00001 at different space points. For test example 2, numerical 
solutions calculated by using both the schemes are shown in Tables 11 and 12. In  
Table 11, numerical solution computed with and without Hopf-Cole transformation is 
compared with exact solution for ν = 1 and Δt = 0.0001. Whereas in Table 12, numerical 
solutions is compared with exact solution for ν = 10 and Δt = 0.00001. From Tables 9 to 
12, it is observed that the numerical solutions are in good agreement with exact solutions. 
These results show that the scheme is consistent and accurate of order two in both space 
and time. In order to show the physical behaviour of the given problem, surface plots of 
the computed solutions are shown in Figures 6 to 9 for distinct values of ν and Δt. 
Figures 6 and 7 show the numerical solution profiles of example 1 at Δx = 0.025. 
Identical values of ν (ν = 0.005 and ν = 0.01) are taken to compare the behaviour of 
velocity distribution obtain with and without Hopf-Cole transformation. For example 2, 
surface plots are given in Figures 8 and 9 for Δx = 0.025. Numerical solution profile of 
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example 2 with Hopf-Cole transformation is plotted in Figure 8 for ν = 0.1 and ν = 1. For 
the same value of ν, surface plot of example 2 without Hopf-Cole transformation is given 
in Figure 9. This clearly gives an indication that the velocity distribution is time 
dependent. 

5 Conclusions 

The proposed implicit scheme without Hopf-Cole transformation and the modified box 
scheme coupled with Hopf-Cole transformation are used to study the properties of the 
solution of Burgers’ equation for the wide range of kinematic viscosity (ν). The present 
numerical experiments have confirmed that, the proposed implicit scheme without  
Hopf-Cole transformation is more accurate than the modified box scheme coupled with 
Hopf-Cole transformation. It is concluded from the Figures 4 and 5 that, Hopf-Cole 
trans-formation negatively affect performance of the difference scheme. L2 and L∞ error 
of numerical solution obtained without Hopf-Cole transformation is less. Both the 
schemes are second order accurate in space and time. There is no requirement with 
respect to mesh size restriction. Tables 9 to 12 indicate that the results are in good 
agreement with the exact solution for modest values of ν. The physical behaviour of the 
solution is explained in Figures 6 to 9 and it is concluded that the numerically calculated 
values are in close agreement with the exact solution. 
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