Inverse dynamics of vehicle minimum time manoeuvre for collision avoidance problem
by Yingjie Liu; Junsheng Jiang
International Journal of Vehicle Safety (IJVS), Vol. 9, No. 2, 2016

Abstract: The paper describes a method for inverse dynamics of vehicle minimum time manoeuvre for collision avoidance problem. Based on this purpose, the vehicle minimum time manoeuvre for collision avoidance, which is treated as an optimal control problem, is firstly converted into a nonlinear programming problem by Gauss pseudospectral method (GPM) and is then solved with sequential quadratic programming (SQP). Finally, a real vehicle test was executed to verify the rationality of the proposed model and methodology. The results show that the simulation values are in good agreement with the real vehicle test values. The algorithm is not only precise, but can also shorten the evaluation period of vehicle handling stability and reduce the tremendous cost for real vehicle testing. The study can more truly simulate the emergency collision avoidance quality including the varying of minimum avoidable distance with different initial velocity.

Online publication date: Fri, 07-Oct-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Safety (IJVS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com