Fast chromosome karyotyping by auction algorithm
by Xiaolin Wu, Sorina Dumitrescu, Pravesh Biyani, Qiang Wu
International Journal of Bioinformatics Research and Applications (IJBRA), Vol. 1, No. 3, 2005

Abstract: We consider the problem of automated classification of human chromosomes or karyotyping and study discrete optimisation algorithms to solve the problem as one of joint maximum likelihood classification. We demonstrate that the auction algorithm offers a simpler and more efficient solution for chromosome karyotyping than the previously known transportation algorithm, while still guaranteeing global optimality. This improvement in algorithm efficiency is made possible by first casting chromosome karyotyping into a problem of optimal assignment and then exploiting the sparsity of the assignment problem due to the inherent properties of chromosome data. Furthermore, the auction algorithm also works when the chromosome data in a cell are incomplete due to the exclusion of overlapped or severely bent chromosomes, as often encountered in routine quality data.

Online publication date: Fri, 30-Sep-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bioinformatics Research and Applications (IJBRA):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com