
Int. J. Advanced Media and Communication, Vol. 6, No. 1, 2016 65

MAP task allocation strategy in an ARM-based
Hadoop cluster by using local storage as split
cache

Bongen Gu and Yoonsik Kwak*

Department of Computer Engineering,
Korea National University of Transportation,
Chungju-Si, 27469, Chungbuk, Republic of Korea
Email: bggoo@g.ut.ac.kr
Email: yskwak@ut.ac.kr
*Corresponding author

Abstract: The increase of power consumption makes the cost of cluster operation
higher. One approach for reducing power consumption is to establish a cluster
with small nodes which equip a low-power, high-performance processor. Since
many lowpower consumed nodes do not have storage devices, a separate storage
system is required to store large-volume data while nodes mount this storage space
to save data. When a Hadoop cluster is configured in such a condition, each node’s
access to a storage results in excessive network load and delays the execution of
Hadoop Map tasks. In this study, we propose a newmap task scheduling policy for
Hadoop. This policy transmits multiple splits to nodes at once to reduce network
load. In addition, local storage space of nodes is used as a cache for a split, which
shortens the time to access splits, so this policy can reduce the execu tion time of
Hadoop applications.

Keywords: Hadoop; ARM; cluster; map; scheduling.

Reference to this paper should be made as follows: Gu, B. and Kwak, Y. (2016)
‘MAP task allocation strategy in an ARM-based Hadoop cluster by using local
storage as split cache’, Int. J. Advanced Media and Communication, Vol. 6, No. 1,
pp.65–72.

Biographical notes: Bongen Gu received his PhD in Computer Engineering at
Kyungpook University. He is currently a Professor at the Department of Computer
Engineering, Korea National University of Transportation. He leads the Computer
System Laboratory (CSL). His research interests include issues related to
high-performance computing, parallel system, storage, embedded system, mobile
system and agricultural product monitoring system.

Yoonsik Kwak received his PhD in Electronics Engineering at Kyung-Hee
University. He is currently a Professor at the Department of Computer
Engineering, Korea National University of Transportation. He leads the
Microprocessor and Embedded System Laboratory (MESL). His research
interests include issues related to embedded system, sensor network application
and agricultural product monitoring system.

Copyright © 2016 Inderscience Enterprises Ltd.



66 B. Gu and Y. Kwak

This paper is a revised and expanded version of a paper entitled ‘TERM-
based MAP task scheduling in an ARM-based Hadoop cluster’ presented at Int.
Conf. on Platform Technology and Service, Platform Technology Letters, Jeju,
26–28 January, 2015.

1 Introduction

Processor and memory technologies are advancing in terms of integration and performance
as the advancement of semiconductor processing technology contribute to the refinement of
elements and circuits. In the early 2000s, semiconductor technology makes manufacturer
enabling to implement 100 nm- or 20 ns-scale semiconductor as described by Kim et al.
(2013). High integration and high-speed operation of semiconductors, however, have caused
an increase of power consumption and excessive heat generation. To prevent semiconductor
elements from being damaged due to the excessive heat, additional cooling systems to
decrease the temperature are necessary and inevitably require more power consumption.
The excessive power consumption of processors and cooling systems is the hindrances to
increase the performance and throughput of the system, which is pointed out by Kim et al.
(2013), Kogge et al. (2008) and Kim and Kim (2010).

High-performance computing (HPC) is technology to provide a high level of computing
power for a large-scale operation in various areas such as science, engineering, and social
science. There are various approaches to HPC. One approach to implementing HPC is
supercomputer equipped with a large number of vector processors. Such supercomputers
store data to be processed in a vector or an arrangement format, and high performance is
secured when each dataset is independent of each other, which is pointed out by Kunzman
and Kale (2011). Recently, cluster-based supercomputers are widely used.

Another way to provide HPC is a general-purpose computing on GPU, which is called
GPGPU. Weijun et al. (2009) pointed out that GPGPU can use the processing power of GPU,
which was originally developed for graphics processing, to process the general tasks. And
Kim et al. (2012, 2013) also pointed out that many recent types of research focus on designing
supercomputers by means of GPGPU. NVIDIA Corp. develops and produces a GPGPU
of CUDA structure. And, NVIDIA (http://www.nvidia.com/object/cuda_home_new.html)
introduces its supercomputer models implemented by using GPGPU. Many-core processor
technology is one of the approaches for HPC, which is pointed out by Mattson (2010).
Many-core processors integrate from tens to hundreds of processing cores in one chip to
increase the throughput.

A cluster is a set of computing nodes that work in unity to execute applications
by networking computer systems that are independently operated. As the number of
nodes in a cluster increases, the processing performance enhances. Even if nodes of
different types and specifications are involved, a cluster can execute applications tasks.
These features make cluster technology being widely used as a way to provide HPC.
To process data by using a cluster effectively, it is necessary to manage nodes, partition
and allocate application tasks. To do this, libraries such as Parallel Virtual Machine
(http://www.csm.ornl.gov/pvm/), Open MPI (http://www.open-mpi.org/) and frameworks
such as hadoop Hadoop (http://hadoop.apache.org/) are utilised.

Cluster technology makes data processing of conventional HPC application enabling.
One of HPC application fields is bioinformatics. In bioinformatics field, alignment for



MAP task allocation strategy in an ARM-based Hadoop cluster 67

a sequence of DNA or protein elements requires significant computing power, and thus
many researchers studies on sequence alignment algorithms and systems. Some researchers,
which are described in Hadoop BLAST (http://portal.futuregrid.org/manual/hadoop-blast),
execute BLAST, a major sequence alignment algorithm, in a Hadoop cluster.

To provide higher performance, the number of nodes on a cluster can be increased.
This situation results in increasing power consumption. As power consumption increases,
nodes generate heat, so air-conditioning systems to decrease the temperature also consume
more power. Many types of research have been conducted with great investments into node
development based on low-power processors to decrease power consumption by nodes
themselves. ARM-core processors developed by ARM Ltd. (http://www.arm.com) are low-
power processors commonly used among mobile devices. Currently, they are used for low-
power servers. A cluster that consists of nodes with a low-power processor may reduce
power consumption.

Nodes that use a low-power ARM-core processor may not include a storage device
such as HDD or involve a small-capacity storage device such as eMMC, flash memory, etc.
Hence, a cluster that consists of such nodes requires a separate storage system, and in this
case, each node shares one storage system. When multiple nodes share one data storage
system, disk access requests from each node are concentrated on the storage system, which
may lead to a bottleneck. For example, basic scheduling policies of Hadoop that allocate
tasks based on the locality of a data block are not effective when all data needs to be stored
in one storage system.

In this paper, we address necessities and problems when one shared storage system is
established for a Hadoop cluster that consists of nodes with an ARM-core processor. We
propose a scheduling policy to solve such problems. The scheduling policy proposed in
this paper is not based on blocks, a basic scheduling unit of Hadoop for Hadoop map task
allocation to each node, but based on a group of blocks that can be allocated to one node
simultaneously. This scheduling policy reads a group of blocks allocated to each node in a
storage at once so that multiple map tasks can be executed simultaneously.

This study includes the following sections. In Section 2, we introduce clusters that
consist of nodes with low-power processors based on the ARM core and Hadoop. In addition,
the necessity and problems of a shared storage systems on a cluster are addressed. In
Section 3, we propose a Hadoop map task scheduling policy, and then we summarise our
works. In Section 4, we summarise our works and presents further study.

2 ARM-based Hadoop clusters

2.1 Hadoop map/reduce

Hadoop is one of the MapReduce programming frameworks, which is described by Tom
(2011), appropriate for processing of large-volume data called BigData. Hadoop consists
of an implementation of MapReduce model and a distributed file system called HDFS.

Figure 1 illustrates the way to process data in Hadoop. Large-volume data is partitioned
to block units and stored in each node – called data node – according to HDFS policies.
The basic size of one HDFS block is 64 MB, and this is called ‘split’ in Hadoop. Each split
is basically stored in three nodes according to HDFS replication policy. Thus, each split
has three copies. Hadoop scheduler allocates one split to one mapper when executing map
tasks. For processing, each mapper executed in data nodes reads splits allocated to it from



68 B. Gu and Y. Kwak

a disk of remote data nodes or a local disk of nodes. mappers deliver the result of map task
processing to Merger. Merger merges result from each mapper and deliver them to Reducer
so that it can execute reduce tasks for additional processing.

Figure 1 Data processing model on Hadoop

64MB

64MB

…

splits on 

HDFS

MAP task

MAP task

merge &

sort

merge &

sort
REDUCE task

REDUCE task

output

output

…

……
…

… …

2.2 ARM-based Hadoop clusters

Various types of ARM-based processors developed with an ARM core are utilised to
implement a low-power, light-weighted server. Some server vendors have released related
products. As ARM cores continued to be developed and the performance enhanced, these
cores used in designing processors for small embedded systems. Such systems support Linux
as the operating system and development environments such as JDK in Java-based software
development. Hence, they may be used as Hadoop cluster nodes. When Hadoop clusters
are established by using ARM core nodes, cluster featured with low-cost, low-power, and
high-performance is possible. Small embedded systems with an ARM core, however, may
not contain a storage device such as HDD or may involve a small-capacity storage device
based on a semiconductor memory such as eMMS and flash memory. Hence, when a Hadoop
cluster is established by means of such embedded systems, a separate storage system is
required for storing large-scale data.

Figure 2 illustrates a common configuration of Hadoop clusters and a of ARM-based
Hadoop clusters. In Figure 2(a) that shows a common configuration of Hadoop clusters,
each node includes a storage device such as HDD, which is used for HDFS. In other words,
large-volume data stored in HDFS is partitioned into split units as previously described, and
each split is stored in HDD of the data node. As mapper executed in data node i processes
data of split i, the split is read by the local disk for processing. In contrast, when mapper
executed in data node j is given split k for processing, this mapper receives split k from data
node m which stores split k through the network for processing. Due to the overhead when
a 64MB split is transmitted through a network, the scheduler of Hadoop uses a scheduler
policy that considers locality for a split to be processed in the data node where it is located.
In this way, split transmission through a network is minimised.

Figure 2(b) illustrates a Hadoop cluster configured with ARM-based data nodes. As
mentioned above, each data node does not include a separate storage for large-volume
data. Thus, an additional storage system is required and provides a file system mounted
through NFS, Samba, etc. In this case, it is logical that the distributed file system should
be formed with the storage at each data node, but the storage mounted and used by each
data node is physically one storage system. Hence, when mappers executed on node i and
j process splits i and j, respectively, every split is transmitted from one storage system.
As a result, the network load of disk input/output of the storage system increases, and
thus scheduling policies of Hadoop based on locality are actually meaningless. Just as if
mapper that processes a split is allocated to a data node in which the split is stored, even if a



MAP task allocation strategy in an ARM-based Hadoop cluster 69

scheduling policy that considers locality is executed by a scheduler, the split is transmitted
through a network physically from one storage system. As described above, one split is
stored basically in three data nodes according to HDFS replication policy. However, since
these data nodes mount their file systems in one storage system, this replication policy may
be unnecessary. To avoid such unnecessary duplicated splits and to consider the split store
strategy based on the storage system rather than locality of splits, a new Hadoop scheduling
policy is required.

Figure 2 Hadoop cluster model: (a) conventional Hadoop cluster and (b) ARM-based Hadoop
cluster

3 TERM-based MAP task scheduling

In this section, we propose a new Hadoop map task scheduling policy in consideration
of the unnecessarily duplicated splits and split locality in ARM-based Hadoop cluster.
Unnecessary duplication of splits that may occur when one storage system is used can
be prevented by changing HDFS configuration parameter of Hadoop to avoid duplicated
storage when data nodes are mounted in one storage system.

Figure 3 compares between replication-enabled and -disabled HDFS configurations. As
shown in Figure 3(a), when split i is stored in data nodes a, b, and c in duplication, this split
is stored in the storage areas mounted at each data node. The goal of duplicated storage
is to prevent data loss due to one data node’s breakdown. This goal can be achieved by
securing the storage system reliability and applying a fault tolerant policy. In other words,
restoration policies for a breakdown of disk need to be executed at the level of a storage
system, not in the level of data nodes. Hence, HDFS replication policy is unnecessary in this
case. As shown in Figure 3(b), however, when there is no need to store splits in duplication,
the storage efficiency is tripled. When the access to a data node fails due to breakdown, as
shown in Figure 3(c), it is possible to restore it by letting a normally operated node to mount
the area because the storage space mounted by that node is still preserved in the storage
even if the data node is broken down.

The map task scheduling policy proposed in this paper is not based on locality but on
the number of map tasks that can be executed simultaneously on each data node. Splits
allocated to each mapper are read by a storage system at once, and then the number of



70 B. Gu and Y. Kwak

storage system accesses is reduced by using as cache the semiconductor memory based
small-volume storage device equipped on the data node. As a result of applying this TERM-
based scheduling policy, the network transmission overhead is reduced and the data access
rates in splits increase.

Figure 3 Fault recovery strategy on replication-disabled Hadoop configuration: (a)
replication-enabled configuration; (b) replication-disabled configuration and (c) faulty
case on replication-disabled configuration

‘TERM’ used in this paper indicates the number of splits allocated to map tasks that can
be executed simultaneously in a data node. Assume that the number of map tasks that can
be executed simultaneously in a data node is n, and the number of splits that the data to
be processed is divided to for storage in HDFS is m. The size of TERM is n, and the
number of TERM is ⌈m/n⌉. The size of TERM is the minimum scheduling unit, and map
tasks are allocated to each data node so that data can be processed simultaneously. Assume
that the size of data to be processed in a cluster is about 6.4 GB and the number of map
tasks that can be executed by the data node simultaneously is 4. The size of TERM is 4



MAP task allocation strategy in an ARM-based Hadoop cluster 71

and data consists of 26 TERMs. As TERM-based scheduling policies schedule map tasks
based on TERM, 4 map tasks are allocated to each data node so that 4 splits are processed
simultaneously.

A data node to which TERM is allocated reads splits to be processed by the storage
system at once and stored in a storage space of data nodes. This storage works as a cache for
split processing. Figure 4 illustrates interactions between the storage system and map tasks
executed in the semiconductor-based local storage space of data nodes. In Figure 4, node i
reads TERM allocated to that node at once and stores it in its own local storage space. The
local storage space in a node can be eMMC or flash memory, and TERM or splits stored in
that area are accessed on a read-only basis at map tasks. Thus, the average access time is
reduced. Each map task processes data by means of splits stored in that area.

Figure 4 Remte/local storage for TERM-based MAP scheduling

: allocated splits 
for node ‘i’ : TERM

node

‘i’

to Mapper

flash-based
local storage

…

storage region

for node ‘i’

storage region

for other node

Storage System

The TERM-based map task scheduling policy proposed in this paper reads splits contained
in TERM at once and stores them in a local storage space of nodes that work at relatively
high rates. This method removes the need for frequent access to the disk or storage system
to partition or process record units of data stored in each split. As a result, network load
does not increase due to frequent access to a storage, and splits stored in a high-speed local
storage space are used for map task execution, which contributes to reducing the general
time of map task implementation.

4 Conclusion

Among various approaches for HPC, clusters are studied in many research projects because
of low cost, expandability, availability, easy maintenance, etc. A cluster is a set of computing
resources that connect computer systems with independent processing capabilities so that
they jointly work for one application process. As the number of nodes that join this cluster
increases, the processing performance and throughput increase in proportion, but power
consumption increases as well. Since more power consumption involves more costs, efforts
to reduce power consumption are required.

One approach to reducing cluster power consumption is to establish a cluster by means
of nodes designed with a low-power high-performance processor. An ARM-core processor
was designed originally for mobile device processors, and thus, low-power consumption
was one of the basic requirements. As ARM core design technology advanced, the functions
and performance of ARM-core processor may be enough to execute a general application.
While the cluster is implemented by using node equipped with an ARM-core processor, it



72 B. Gu and Y. Kwak

is possible to establish a cluster of low-power, low-cost, and high-performance. Many of
the small nodes with ARM core processors, however, do not include storage devices such as
HDD for large-volume data, and thus a separate storage system may be required. In such a
cluster environment, making and executing applications by means of a Hadoop framework
is likely to involve frequent access to the storage system and increase of network load,
which will lower the performance of map task implementation.

We described the flaw of Hadoop map task scheduling policies based on split locality on
ARM-core based cluster. And we proposed a TERM-based scheduling policy as a solution.
According to this scheduling policy, a node reads multiple splits from a storage system at
once and stores them in a local storage space. map tasks access splits in the local storage
to process data. This is to reduce network load by preventing frequent access to a storage
system and utilise data cached in a local storage space for map task implementation. As a
result, the general processing time is reduced.

In future, we study on the implementation of the scheduling policy proposed in this
paper.

References

Kim, Y.W. and Kim, S.W. (2010) ’Technology and trends of high performance processors’, Electronics
and Telecommunications Treads, Jungsun, Vol. 25, No. 5, pp.123–136.

Kim, Y.W., Park, K. and Kim, H.Y. (2012) ‘Recent treands on high performance computing system
technology’, Proc. of the ITFE Summer Conf., pp.23–25.

Kim, Y.W., Kim, H.Y., Bae, S., Kim, H.Y., Woo, Y.C., Park, S.J. and Choi, W. (2013) ‘Design fo
MAHA supercomputing system for human genome analysis’, Trans. on Software and Data
Engineering, Vol. 2, No. 2, pp.81–90.

Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P.,
Harrod, W., Hill, K., Hiller, J., Darp, S., Keckler, S., Klein, D., Lucas, R., Richards, M.,
Scarpelli, A., Scott, S., Snavely, Al., Sterling, T., Stanley, R. and Yelick, K. (2008) Exascale
Computing Study: Technology Challenges in Achieving Exascale Systems, Defense Advanced
Research Projects Agency Information Processing Techniques Office, RechRep.15.

Kunzman, D.M. and Kale, L.V. (2011) ‘Programming heterogeneous systems’, 2011 IPDPSW,
Shanghai, pp.2061–2064.

Mattson, T. (2010) The Future of Many Core Computing: A Tale of Two Processors, Intel Labs Report.
Tom, W. (2011) Hadoop: The Definitive Guide, O’relilly.
Weijun, X., He, H., Yan, S. and Qing, Y. (2013) ‘Promise of embedded system with GPU in artificial

leg control: enabling time-frequency feature extraction from electromyography’, Engineering in
Medicine and Biology Society, Minneapolis, MN, pp.6926–6929.

Websites

ARM – The Architecture For The Digital World, http://www.arm.com
Hadoop BLAST, http://portal.futuregrid.org/manual/hadoop-blast
What Is Apache Hadoop, http://hadoop.apache.org/
nVidia, CUDA Parallel Computing Platform, http://www.nvidia.com/object/cuda_home_new.html
Open MPI: Open Source High Performance Computing, http://www.open-mpi.org/
PVM: Parallel Virtual Machine, http://www.csm.ornl.gov/pvm/




