Adsorption isotherm and kinetics of paraquat removal using activated carbon/iron oxide composite material
by Jirapat Ananpattarachai; Pattra Aphaiphak; Roongkarn Ard-ong; Puangrat Kajitvichyanukul; Yung-Tse Hung
International Journal of Environment and Waste Management (IJEWM), Vol. 17, No. 3/4, 2016

Abstract: A composite material between activated carbon (AC) and iron oxide in nanoscale was used to remove paraquat from contaminated water. The surface area of AC/iron oxide nanoparticles was in the range of 754.39 to 775.81 m²/g for the ratio 1:1 to 10:1 AC:iron oxide nanoparticles. The maximum adsorption capacity was found at pH 11. Adsorption of paraquat increases with increase in temperature indicating an endothermic process. Sorption behaviour of paraquat onto AC/iron oxide nanoparticles was evaluated using the Langmuir and Freundlich isotherm. The adsorption behaviour of paraquat was well described by Freundlich isotherm indicated that AC/iron oxide nanoparticles posed heterogeneous surface with heterolayer paraquat coverage on the surface of composite material. First and second order kinetic models were tested. The paraquat adsorption rate fits a pseudo-second-order kinetic model where the rate-limiting step is assumed to be chemical sorption between the adsorbate and adsorbent. The AC/iron oxide nanoparticles can readily be separated from the solution using a permanent magnet.

Online publication date: Thu, 25-Aug-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Environment and Waste Management (IJEWM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com