Energetic and exergetic evaluation of a novel solar-based cogeneration cycle for combined production of power and cooling
by Abdul Khaliq; Fahad Al-Sulaiman
International Journal of Exergy (IJEX), Vol. 21, No. 1, 2016

Abstract: In this paper a parametric study is conducted to investigate the effect of influencing operating variables on cooling to power ratio and exergy efficiency of the solar based cogeneration cycle. The results indicate that both energy and exergy efficiencies of the cogeneration increases by less than a percent while cooling to power ratio reduces by 33% when the direct normal irradiation (DNI) rises from 800 W/m² to 975 W/m². The energy efficiency (EUF) and exergy efficiency vary from 28.43% to 32.82% and 16.67% to 15.66%, respectively, when turbine back pressure increased from 0.3 MPa to 0.475 MPa. The EUF and cooling to power ratio vary from 31.15% to 43.66% and 1.3 to 2.25, respectively, with a rise in evaporator temperature from 4°C to 11°C. It is indicated that around 83.97% of the input solar exergy is destroyed owing to irreversibilities in the components and via energy transfers through the condenser and drain water.

Online publication date: Mon, 22-Aug-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com